
Vol 34, No. 4, 2002 December 125 SIGCSE Bulletin

R
eview

ed
 P

ap
ers

Vol 34, No. 4, 2002 December 125 SIGCSE Bulletin Vol 34, No. 4, 2002 December 125 SIGCSE Bulletin

1. Introduction
Extreme programming [2] (XP) is a lightweight software
development method organized around a set of practices and
principles that have recently gained the attention of an
important fraction of the software development community,
possibly due to the promise of more flexibility for changes in
customer requirements, improved code quality, and shorter
development times. Unit Testing is one of its core practices,
and XP fosters a disciplined approach to ‘white-box’ regres-
sion testing in the context of a Continuous Integration prac-
tice, in which coding assignments are broken up into small
tasks, whose results are integrated daily in a collective code
base.

We summarize the Unit Testing practice in the following
principles (as described in [6]):
• Build the test as the code is developed (“test a little, code

a little”), and not before of after.
• Run all the tests frequently, each time a change in code is

released, and making sure that they run perfectly all the
time.

• Consider test cases as code components that are deliver-
ables, just as the program code itself.

Automated unit testing (AUT) practices are becoming wide-
spread in the software development industry as a result of the
influence of the XP development approach, since they’re
required to effectively carry out daily regression testing.

In this work, we describe the early results of a teaching
experiment in integrating AUT as part of a traditional
“Introduction to Programming” course, intertwining test
case construction with programming in laboratories and
assignments, and raising test cases as a first-class deliver-
able. Although many programming language-specific freely
available unit testing frameworks have appeared under the
generic name of xUnit as in <http://xprogramming.org>,
none of them apply to the classic procedural languages that
we might use in many introductory programming courses.
To overcome this lack, we have designed a unit testing
framework for Borland’s old Turbo Pascal integrated devel-
opment environment, which allows for testing subprograms
(procedures and functions) rather than methods defined in
classes (a testing framework called dUnit exists for the
Object-Pascal language included in Borland’s Delphi tool,
but our focus is not in object-oriented programming teaching
in this article). Therefore, we can easily apply the approach
taken here to courses using other procedural languages that
we often use as introductory such as C or Modula-2.

This integration has the obvious benefit of reinforcing
the learning of a subject included in curricula recommenda-
tions (for example, in [5], test case design is included in
imperative-first introductory courses), but a deeper under-
standing of the potential benefits of testing frameworks in
the classroom requires additional empirical evidence.

An Experience in Integrating Automated Unit Testing Practices in
an Introductory Programming Course

Elena García Barriocanal
Computer Science Department. Polytechnic School

University of Alcalá. Ctra. Barcelona km. 33.600, 28871. Madrid, Spain
<elena.garciab@uah.es>

Miguel-Ángel Sicilia Urbán
Ignacio Aedo Cuevas

Paloma Díaz Pérez
Department of Computer Science, DEI Laboratory.

Carlos III University. Avda. Universidad, 30, 28911. Madrid, Spain
<msicilia@inf.uc3m.es, aedo@ia.uc3m.es, pdp@inf.uc3m.es>

Abstract
Unit testing is one of the core practices in the Extreme Programming lightweight software development method, and it
is usually carried out with the help of software frameworks that ease the construction of test cases as an integral part of
programming tasks. This work describes our first results in studying the integration of automated unit testing practices
in conventional ‘introduction to programming’ laboratories. Since the work used a classical procedural language in the
course’s assignments, we had to design a specific testing framework called tpUnit. The results of the experiment points
out that a straightforward approach for the integration of unit testing in first-semester courses do not result in the expect-
ed outcomes in terms of student’s engagement in the practice.

XP has received considerable attention from computer
science educators [10] in search of benefits in the learning
process that can result from XP practices. Related work
include experiments that used AUT in conjunction with other
practices in classroom settings, [1] or in supplementary
courses [11], but our work focuses exclusively in introduc-
ing unit testing, so that its impact in learning can be exam-
ined in isolation from that of other XP practices. In addition,
we can find in [9] a previous report on some potential bene-
fits of unit testing in Java introductory courses.

2. Essential Automated Unit Testing Concepts
A unit test exercises “a unit” of production code in isolation
from the full system and checks that the results are the
expected ones. Its purpose is to identify bugs in the code
under test before integrating the code into the rest of the sys-
tem. The size of “a unit” to be tested depends on the size of
the set of coherent functionality, and in practice varies from
a class to a package when we use object-oriented program-
ming languages like Java, or between a single procedure or
function and a unit, when procedural languages like Turbo
Pascal are used.

Software engineering describes several reasons for unit
testing. Perhaps, the most relevant one is that the sooner the
units are tested, the quicker and cheaper is to correct possi-
ble bugs and to demonstrate that the solutions works.
However, testing units in isolation can be difficult. xUnit
frameworks are the test harnesses that enable the automatic
running of test cases, recording of results and reporting of
errors for classes or code modules.

When using automatic unit testing frameworks, devel-
opers must write tests that check non trivial pieces of code
that don’t provide user-interaction. We can hierarchically
structure these test cases forming ‘trees of tests’ (called
suites in xUnit jargon) to facilitate the testing of related
parts of the program. In addition, we must provide some
kind of text or GUI-based tool to automatically run all or part
of the tests of a program, reporting failures in a way that pro-
grammers can easily locate them in the code.

3. Integrating AUT in the Classroom
To find evidence about the usefulness of integrating AUT
practices in the first course of computer science studies, we
have planned and began to carry out a number of design
experiments in the classroom. We followed the guidelines in
[4]. To put it in context, we have to describe our mid-term
research objectives in unit testing and education, which we
can synthesize in the following three questions:
1. Do unit-testing practices in CS1 assignments and labs

really improve code quality?
2. Do CS1 students enjoy writing test cases?
3. Do unit-testing practices in CS1 enhance the student’s

learning process?
The first and second hypothesis are the direct translation of
two of the major claims of the XP Unit Testing practice,
while the third is intended to assess if the integration is
worthwhile from a pedagogical perspective. We arranged

the methodology for our study in two phases. In the first
phase, we will carry out experiments in both first and second
semester programming classes. In the second phase, we will
collect and analyze the results in search for correlations
between the use of AUT practices and student scores (trying
to answer to the third question). This paper reports the first
experiment in the first phase, specifically intended to answer
hypothesis two. The paper also describes some preliminary
results and lesson learned about hypothesis one.

The participants in our experiment were one hundred
students of a Computer Science introductory course at the
University of Alcalá. The course contains a three-hours lec-
ture and two laboratory hours each week, aimed at working
the theoretical concepts and the practical matters, respec-
tively. Around 75% of the students attended classes during
a half-day session about how they can automate unit testing
using testing frameworks. Documentation and examples
about AUT practices were available through department web
servers, and students were able to practice in labs all the key
concepts. We previously explained to all students the essen-
tial theoretical concepts about unit test cases, just after they
have reached basic procedural programming skills (typical-
ly, at the middle of the semester).

XP claims that programmers are supposed to enjoy writ-
ing testing units for their own code [3], considering unit tests
as an integral part of their work. The procedure used for
gathering evidence about this fact consisted in giving the stu-
dent the freedom to decide on using our testing framework
(in his/her assignments and exercises) or not. All of them
knew that the use of the automatic testing framework was
optional and they would not obtain higher score by merely
using it. At the end of the semester, a simple Likert-scale
questionnaire asked about their level of satisfaction with the
technique. The sentences, which could be answered with a
typical 1..5 scale (from ‘strongly disagree’ to ‘strongly
agree’ as usual), were the following.:
• I had prior knowledge about XP and its practices.
• Writing testing cases was easy for me.
• Writing test cases helped me in making better code.
We included question one to be sure that the negative student
perceptions about XP reported in senior students [8] was not
present in our experiment.

As part of the course, students are required to develop a
final assignment and they must pass an exam for the lab part.
On the one hand, we used that final assignment to evaluate if
we see an improvement in code quality when students use
AUT. On the other hand, we can use exam scores obtained
by students who used the framework in their assignment,
compared to those who didn’t, for measuring the improve-
ment in knowledge about programming fundamental con-
cepts when unit testing frameworks were used in practice.

Since the procedural language Pascal is used as the pro-
gramming tool in the laboratory (more specifically, we use
Borland’s old integrated development environment, called
Turbo Pascal), we have developed and documented a unit
testing framework for this environment that is described in
the following section.

SIGCSE Bulletin 126 Vol 34, No. 4, 2002 December

R
ev

ie
w

ed
 P

ap
er

s

4. The tpUnit Framework Design
We have developed a Turbo Pascal separately-compilable
unit to isolate all the unit testing-related functions, so that
students can reference them by including tpUnit in the
appropriate reference clause. The most important definitions
in the unit are the following:

type testCase = procedure;
procedure assert(exprResult: boolean;

name: string; description: string);
procedure registerTest(test: testCase);
procedure runAllTests;

Some object-oriented unit testing frameworks like jUnit for
the Java language rely on advanced language capabilities
(i.e. reflection) to identify test methods by their name at run-
time. Since old languages lack those capabilities, the pro-
grammer is responsible for registering test cases by invoking
the register procedure registerTest, which uses a proce-
dural-type parameter. Programmers must register all the test
cases. Once tests are registered, they can run them by writ-
ing a main program. The runAllTest procedure executes
all the previously registered tests, and reports failures in a
similar manner as common xUnit testing frameworks do.

As we explained in previous sections, we can group test
cases in suites. However, programming exercises in com-
puter science introductory courses are so simple that usually
do not require building suites that group them. However,
suite trees can be created using createTestSuite and
createSubSuite procedures, and test cases can be regis-
tered into a particular suite using registerTestInSuite.
The test cases of a suite tree can run independently of other
suites using runAllTestsInASuite procedure. A
‘default’ suite is available when a student calls the
registerTest procedure.

Before registering and running test cases, they students
should code test cases using procedures without parameters
and without user interaction. Each test case verifies the cor-
rect working of a specific execution scenario for a subpro-
gram. The assert procedure is used to check test case post-
conditions. This procedure takes as parameters a boolean
expression that should yield a ‘true’ value if the correct
results are produced, the name of the subprogram that must
generate the result (the tested subprogram) and the descrip-
tion that will be showed if the boolean expression is not sat-
isfied (indicating that an unexpected error occurred, and
debugging is required).

5. Results
Only about 10% of the students that were subjects of the
experiment developed test cases in their assignments, so that
the data gathered by the questionnaire is far from statistical
significance. Despite this fact, the results of the satisfaction
questionnaire were encouraging for further research: 70% of
the students that answered the questionnaire found easy to
use (4-5 points in the Likert scale) the Turbo Pascal testing
framework, and all of they thought this practice improved
their code quality (again, 4-5 points in the Likert scale). In

addition, none of them had previous knowledge about
xUnit or XP. They also carried out two simultaneous exper-
iments to be able to compare the results. The first was in a
very similar environment at Carlos III University; in this
case, they used Java in laboratories in an ‘object-first’
approach for a first semester course using. They used the
second through an internet asynchronous virtual environ-
ment in a first course in object-oriented programming for
first course students. In both cases, results were even less
significant in terms of student’s engagement in unit testing
practices, and thus served only as reinforcements of the
results of the main experiment.

Overall, experiment results point out that hypothesis
two does not apply to a traditional programming lab setting.
(We note that empirical testing in professional development
contexts did not validate this hypothesis.) In addition, per-
haps further contextual elements are required in the class-
room (beyond instructor advice and theoretical understand-
ing of the benefits of the technique) to make students be
motivated to write unit tests as they code. These results are
in accordance to the recommended knowledge prerequisites
in the SEI ‘Unit Analysis and Testing module’ [7] that indi-
cates “the student of unit analysis and testing should, of
course, have a solid background in programming”. We think
that the few students that used the AUT framework in their
assignments had higher programming skills than the rest of
the students in the sample, and this fact could justify the pos-
itive questionnaire results about their opinion about writing
test cases. Not surprisingly, students that used the frame-
work scored high in their assignment’s evaluation.
However, due to the low participation rates, we cannot draw
any definitive conclusion about this fact.

In forthcoming evaluations, we expect to compare the
results with second-semester students that should have
acquired solid programming skills. We need a large number
of automatically tested assignments to find evidence about
the third hypothesis. That is, we need more information
about the improvement in code quality when they use AUT.
We are planning to introduce an additional motivational
ingredient, like for example, an extra score in the course.

References
[1] Astrachan, O., Duvall, R. C., Wallingford, E. Bringing

Extreme Programming to the Classroom. Proceedings of XP
Universe Conference’01, 2001.

[2] Beck, K. Extreme Programming Explained: Embrace Change,
The XP Series, Addison Wesley, 2000.

[3] Beck, K., Gamma, E. Test infected: Programmers love writing
tests. Java Report, 3(7), July 1998.

[4] Brown, A. L. Design Experiments: Theoretical and
Methodological Challenges in Creating Complex
Interventions in Classroom Settings. Journal of the Learning
Sciences 2(2), 141-178.

[5] IEEE/ACM Joint Task Force on Computing Curricula,
Computer Science Curricula 2001 final report, 2001.

[6] Jeffries, R., Anderson, A. and Hendrickson, C. Extreme
Programming Installed, Addison Wesley, 2001.

[7] Morell, L.J., Deimel, L.E. Unit Analysis and Testing, SEI

Vol 34, No. 4, 2002 December 127 SIGCSE Bulletin

R
eview

ed
 P

ap
ers

Vol 34, No. 4, 2002 December 127 SIGCSE Bulletin Vol 34, No. 4, 2002 December 127 SIGCSE Bulletin

SIGCSE Bulletin 128 Vol 34, No. 4, 2002 December

R
ev

ie
w

ed
 P

ap
er

s

Curriculum Module, SEI-CM-9-2.0, 1992.
[8] Sanders, D. Student Perceptions of the Suitability of Extreme

and Pair Programming. Proceedings of XP Universe
Conference’01, 2001.

[9] Steinberg, D. H. The effect of Unit Tests on Entry Points,
Coupling, and Cohesion in an Introductory Java Programming
Course, Proceedings of XP Universe Conference’01, 2001.

[10] Williams, L. & Upchurch, R. Extreme Programming For
Software Engineering Education?. Proceedings of Frontiers in
Education 2001, 2001.

[11] Wege, C., Gerhardt, F. Learning XP: Host a Boot Camp.
Extreme Programming in Practice. The XP series. Addison-
Wesley, 2001.

Call for Manuscripts

Computer Science Education Journal

A scholarly journal devoted to the
improvement of teaching and learning effectiveness

for students of computer science
at the college and university level

Seeks to publish manuscripts documenting
computer science educational research and practice

Editors

Sally Fincher Renee McCauley
University of Kent College of Charleston

Canterbury, United Kingdom Charleston, South Carolina, USA
<S.A.Fincher@ukc.ac.uk> <mccauley@cs.cofc.edu>

Details at

<http://www.swets.nl/sps/journals/cse1.html>

