
Introducing Fuzziness in Object Models and

Database Interfaces through Aspects

Miguel-Angel Sicilia, Elena Garćıa-Barriocanal and León González-Sotos
Computer Science Department, University of Alcalá

Ctra. Barcelona km. 33.6 — 28871 Alcalá de Henares, Madrid, Spain
{msicilia, elena.garciab, leon.gonzalez}@uah.es

Abstract

Imperfection in information can be considered a cross–cutting con-
cern that manifests itself in diverse kinds of imprecision, uncertainty
or inconsistency in the data models of a software system. The exten-
sion of existing programming and querying interfaces for the different
aspects of information imperfection requires a proper modularization
of the different concerns of numerical imprecision handling, so that the
extensions do not interfere with existing programming practices and do
not obscure the original design. Aspect–oriented design (AOD) enables
such form of non–intrusive extensions to be added to existing software
libraries, clearly separating fuzziness or other imperfections in data as
a differentiated concern, that can be considered from the early phases
of development. In this paper, a general framework for aspect–based
extension of data models and fuzzy databases is described, and some
design and implementation issues of such AOD–based extensions on
OJB database libraries are described as a case study.
Keywords Aspect–orientation, fuzzy databases, orthogonal persis-
tence.

1 Introduction

A growing body of research regarding fuzzy databases and fuzzy querying
has emerged in the last years, encompassing diverse extensions to the rela-
tional and object data models, e.g. [3, 4, 7]. As a result, several research–
oriented implementations of fuzzy queries on top of commercial database
systems or standard interfaces have been developed as those described in
[18, 30, 8, 31]. In addition, a tendency to develop object–oriented program-
ming and querying interfaces independent from the actual data sources —

1



which was the focus of the persistence services of CORBA1 and also of several
vendor–specific products — has resulted in standardized programming and
querying interfaces like the Jdo specification [15]. One of the key character-
istics of Jdo is the fact that it is deliberately independent on the underlying
storage and architecture of the data sources, so that some form of data map-
ping is processed by a Jdo software layer, informed by a set of metadata de-
finitions. In consequence, interfaces for orthogonal persistence [1] of objects
are provided to the programmers, irrespective of the actual management of
data and query resolution, which can be relational or object–oriented.

The extension for fuzziness of such kind of interfaces can be accomplished
by adding elements to the query syntax — as is done in [5]— and also by
augmenting programming interfaces to deal with the desired fuzzy modelling
capabilities — e.g. as in [18]. In any case, several reasons point to some
implementation characteristics that are required for a seamless integration
with existing interfaces. On the one hand, extensions should be strictly
additive, i.e. they should not interfere with the non–fuzzy capabilities of
the programming and querying interfaces, both for the sake of backward–
compatibility and of ease of learning [21]. And on the other hand, the ex-
tensions should be properly modularized, not obscuring the original design
and architecture of the extended database libraries. The first requirement
can be met through a careful design, using polymorphism and proxy ob-
jects as described in [18], and using reflective capabilities when required as
described in [2]. Nonetheless, the second requirement calls for specialized
design and implementation capabilities that allow the extension of software
with cross–cutting concerns (as fuzziness can be considered with regards
to data representation). Aspect–oriented design (AOD) [27] provides the
required modularization capabilities for the latter issue, since aspects, ad-
vices and introductions as programming constructs are able of separating
the details of the handling of imperfection in data.

Recent research has sketched how aspect–oriented design can be used
to extend existing database interfaces for fuzziness [23]. This paper pro-
vides a broader, more comprehensive framework for such technical issues,
and highlights the principal design elements that must be considered when
developing such kind of extensions. The concept of “early aspects” [22] pro-
vides a conceptual, analysis–level model for introducing the different facets
of information imperfection [24].

The implementation issues of fuzzy extensions to object–database inter-
faces are approached from the perspective of AOD, addressing both general

1http://www.omg.org/corba/

2



implementation issues and a concrete case study using aspectj to extend
the Java–based interfaces of the ObjectRelationalBridge (OJB)2 open–
source libraries. Related work includes studies of fuzziness related to pro-
totype theory of categorization [26] to classify types of software units, and
advances on extending programming language semantics through reflection
[2], but no previous research apart from [23] exists on the introduction of
fuzziness in software units through aspect–oriented techniques.

The approach to introducing fuzziness described in this paper starts with
requirement analysis, considering imperfection in data as an analysis con-
cern. The identified requirements can then be mapped to concrete extensions
at design time, and aspect–oriented programming provides the mechanism
to implement such concerns in a modular way. In addition to the traceability
and early consideration of imperfection, this approach provides the benefits
of being non–intrusive, in the sense that the existing applications can be
augmented for imperfection, and new ones can benefit from an isolation of
the details of the numerical algorithms that deal with fuzziness, uncertainty
or inconsistency.

The rest of this paper is structured as follows. Section 2 provides a
general framework to introduce diverse information imperfection issues in
conceptual modeling. In Section 3, a concrete extension case is described.
Concretely, the main general issues of extending OJB interfaces with fuzziness
are described. Then, a simple case of fuzzy extension is sketched in Section
4 for illustration purposes. Finally, conclusions and future research issues
are provided in Section 5.

2 Addressing Information Imperfection through Aspect-
orientation

2.1 Information imperfection as a concern

The separation of concerns principle has recently been applied to early
stages of development like requirements engineering [25, 14, 11] and soft-
ware architecture [28]. The early separation of cross–cutting concerns re-
sults in improved localization, and eventually in improved development and
maintenance activities. In the research literature, a number of examples
of cross–cutting concerns are often used for illustration purposes, or they
are described when reporting case studies. Recurring examples include, for
example, security, usability, persistence or performance.

2http://db.apache.org/ojb/

3



The focus of this paper is that of imperfection in information as a cross–
cutting system concern that is currently overlooked in many application
models. Imperfection is a multifaceted concept including imprecision, un-
certainty and inconsistency, being classical probability a model for a specific
type of imperfection among many others. Currently, general and mature
mathematical frameworks for the management of imperfection are available
[13], although their widespread use in mainstream development technolo-
gies and industrial systems is still to come. To adhere to an unambiguous
interpretation of the terms used for the various sub–aspects of information
imperfection, we’ll use them in the sense given in Smet’s taxonomy described
in [24].

Imperfection in information should be addressed early in the lifecycle
due to the specifics of uncertainty and imprecision in conceptual modeling
[6], and its impact on architectural and implementation decisions, most no-
tably in persistence and querying [18]. Information imperfection is a logical
“matter of interest”, according to COSMOS [25] terminology.

2.2 Classifying concerns for information imperfection

An straightforward classification would include one class for each of the
principal aspects of imperfection:

• Imprecision-Related

• Uncertainty-Related

• Inconsistency-Related

• Hybrid. This category accounts for any combination of the above.

According to Smets, “imprecision and inconsistency are properties re-
lated to the content of the statement: either more than one world or no
world is compatible with the available information, respectively. Uncer-
tainty is a property that results from a lack of information about the world
for deciding if the statement is true or false. Imprecision and inconsistency
are essentially properties of the information itself whereas uncertainty is a
property of the relation between the information and our knowledge about
the world”.

Classes inside those categories may refer to more specific types of imper-
fection according to Smet’s taxonomy, e.g. FuzzyElement refers to “impre-
cision without error” without decidability as in “age is close to 30”, while
PossibleElement refers to “happen–ability” as a kind of uncertainty.

4



In addition, imperfection manifestations can be classified in Domain-Imperfection,
UserImperfection and System-Imperfection according to the source from
which the imperfection originates. For example, inferences internal to the
system may generate imperfect information from perfect inputs. Imperfec-
tions coming from the user might be used to reflect somewhat uncertainty
in the modeling itself. This concept is similar to that of the Fuzzy-EER at
level L1 for entities, relationships and attributes, so that, for example, the
set of entities in a model can be given a membership grade [6], that can
be interpreted, for example, as “it’s not completely sure the role element E
plays in the context of the model”.

According to the kind of element in the conceptual model that is subject
to imperfection, we can have additional classifications, namely ImperfectElement
and ImperfectRelationship, the former containing classes ImperfectClass,
ImperfectAttribute, ImperfectFunction and ImperfectResult which
roughly correspond to classes, attributes, method (or more generally, func-
tionality), and method results in conceptual models, and the latter contain-
ing classes for each type of relationship (association, generalization, etc.).
Imperfect conceptual model elements can be expressed in the domain model
through extensions to the UML like the one sketched in [17]. Figure 1 de-
picts some of the just described elements and some of example relationships
between them, representing classifications as UML packages.

Properties as defined in COSMOS are “concerns that characterize other
logical concerns”. Concerns that arise in the context of imperfection include
Granulation-level and Interpretability. The former refers to the de-
gree of “summarization” of an element, e.g. “large pages” may be interpreted
to subsume “very–large” and “moderately large”, thus summarizing infor-
mation. The latter refers to the ease of interpretation of the information
by humans, and is often considered as a quality criteria in rule bases. They
can be used as requirements constraining the design of other concerns, e.g.
High-Interpretability may involve selecting a fuzzy rule simplification
algorithm at later stages for the computation of a given conceptual model
element.

2.3 Information imperfection concerns in the Software En-
gineering process

It should be noted that the imperfection–related concepts introduced so far
do not require understanding neither about the mathematical frameworks for
uncertainty handling not about their software representation, so that they
can be considered a concern in domain and requirements engineering. This

5



Uncertainty-RelatedImprecision-Related

FuzzyElement
PossibleElement

ImpreciseElement UncertainElement

ApproximateElement
ProbableElement

Imperfect-Element

System-
Imperfection

Domain-
Imperfection

User-Imperfection

Imperfect-Relationship

Imperfect-Class

Imperfect-Attribute

Imperfect-Association

Imperfect-Generalization

+AttributeOf

1

*

ImperfectFunction

ImperfectResult

+ResultOf

1
*

+connectsClasses2..*

+super1

*

+sub1

*

Figure 1: General concern dimensions related to information imperfection

makes possible that they can be used at the stage of requirement analysis,
which would result in a first specific practice.

Specific practice 1 Identify and classify the information imperfection as-
sociated to each conceptual modeling data element, if any.

This entails an analysis of data elements (e.g. clases, attributes) and the
adoption of a classification framework as the one described above.

Such concern–analysis enables the early identification of imperfection–
related requirements, that would be mapped in subsequent phases of the
software engineering life cycle to concrete architectural elements and ulti-
mately to libraries or class frameworks dealing with fuzziness or other impre-
cision and uncertainty handling aspects. In fact, classical error theory that
manifests in required degrees of precision in numerical computations is just
a model to deal with a concrete facet of imperfection related to numerical
representation and error in measurement instruments.

6



The second practice entails design, since a computational framework
must be selected for each analysis–level concern. This leads to a second
specific practice.

Specific practice 2 For each information imperfection concern identified
in the analysis, choose the appropriate mathematical formalism for its rep-
resentation.

This design step entails the explicit documentation of the decision made
to choose a concrete mathematical framework [13]. A consideration of com-
putational complexity, and the availability of libraries could be accounted
for in these design activities.

Aspect–oriented design (AOD) can be used as the candidate detailed
design technique whenever concerns cross–cut software modules, and it be-
comes the required option if existing libraries are required to be extended
for fuzziness without changing the syntax and semantics of their interfaces,
since aspects like those of aspectj[10] allow the proper modularization and
encapsulation of concerns, avoiding tangling existing source code.

Specific practice 3 If some existing persistence libraries or interfaces are
used, use AOD and AOP to achieve non–intrusive extensions. Else, carefully
design the interfaces of the tailored code to allow for aspect development of
the code that deals with the specifics of information imperfection handling.

Further, AOD enhances maintainability, since the added concerns for
fuzziness are separated from “crisp” functionality, so that defects can be
easily located. In addition, AOD for the implementation of fuzziness eases
the production of “crisp” and “fuzzy” versions of the same software, since the
features of advice and introduction contained in aspects are dynamic, and
thus they are “disabled” by simply excluding the aspects from the concrete
build of the system. This enables the key consequence that “backward
compatibility” is achieved, i.e. the introduction of fuzziness can be simply
ignored by the original applications that did not dealt with fuzziness.

2.4 An example: Market segmentation

Market segmentation systems provide support for the classification of cus-
tomers with the purpose of targeting marketing strategies [29]. Market
segmentation criteria are in many cases uncertain, and the resulting sub-
sets can be considered to have no sharp boundaries, specially in the new
relationship marketing paradigm [20].

7



A basic model for market segmentation using the relationship value
model in [20] will result in the classes and instances showed in Table 1.

Segments can be considered imperfect classes of users inferred by the
system from a net value relationship model that estimates the value of each
customer relationship from rough estimates of increments in purchases and
expected relationship duration. Those estimates are rough pessimistic and
optimistic values obtained from experts. Clustering algorithms are often
used for the delineation of the boundaries of such segments.

Customer similarity is derived from the segments and perhaps from the
analogies in purchasing behavior of a pair of customers, as often interpreted
in recommender systems [16].

This example serves an illustrative purpose. It should be noted that the
decisions about the classification of the different elements is contingent to
the actual knowledge of the specificities of the problem domain, and these
in turn determine the numerical handling of imperfection that will come at
design time.

3 Extending OJB with Aspects for Fuzziness

As mentioned above, the techniques of aspect-oriented design (AOD) pro-
vide improved modularity to software systems by focusing on separation of
concerns [27]. Fuzziness as a concrete form of information imperfection can
be considered a cross–cutting concern for existing database processing li-
braries, so that it can be added to existing crisp software without altering
the programming interfaces that are being used.

As a proof of concept for introducing fuzziness in existing libraries, the
OJB framework has been extended by using AspectJ. The AspectJ frame-
work [10] is an AOD extension to the Java programming language based
on the concept of dynamic pointcut (the intersection of a number of well–
defined execution points) and advice (code attached to specific pointcuts).
Using aspects in OJB requires a previous recompilation of its source code ver-
sion, which can be accomplished by adding an Ajc task to the build.xml
ANT file of OJB.

OJB supports multiple persistence application programming interfaces
(APIs):

• An ODMG 3.03 compliant API.
3http://www.odmg.org/

8



• A JDO 1.04 compliant API.

• An Object Transaction Manager (OTM) layer that contains all fea-
tures that JDO and ODMG have in common.

• A low-level PersistenceBroker API which serves as the OJB persistence
kernel.

The OTM-, ODMG- and JDO-implementations are build on top of the
persistence kernel, so that it makes sense to concentrate first on it, and
later address higher–level interfaces. In addition, a principle of “minimum
difference” with existing interfaces and programming idioms is followed, in
an attempt to maximize the usability of the extensions in the sense described
in [21]. In the rest of this section, the main design issues surrounding the
extension of OJB are briefly described.

3.1 Extending metadata handling interfaces

Metadata handling in OJB is centralized in the MetadataManager class, im-
plementing a singleton pattern [9] that can be used to obtain a reference to
the DescriptorRepository instance containing object mapping and manip-
ulation information for persistent objects. The class needs to be extended
to deal with the required metadata describing fuzzy constructs.

The better way to do it is by merging standard metadata descriptions
with fuzzy ones. This can be accomplished by invoking the mergeDescriptorRepository
method of MetadataManager after a (successful) call to the MetadataManager.init
method at construction time. Since init is a private method in MetadataManager,
the pointcut could be changed to any constructor of the class. This will pre-
vent that an evolution or refactoring of the internals of the libraries requires
a change in the aspect code. It should be noted also that the documentation
of the libraries state that “all metadata is read at startup of OJB, when the
first call to PersistenceBrokerFactory [...] or MetadataManager class was
done”. Consequently, the calls to the factory may also be included to cover
all the possible initialization paths.

The merging can be done by capturing its pointcut through an around
advice. The following code fragment sketches an aspect encapsulating such
processing:

public aspect FuzzyMetadataManagement {
private DescriptorRepository globalRepository;

4http://java.sun.com/products/jdo/

9



void around (MetadataManager m):
target(m) && call(* MetadataManager.init(..)){
try{

proceed(m);
}catch(MetadataException e){throw e;}

// create a mapping repository:
globalRepository = loadFuzzyDescriptorRepository();
// merge with standard OJB mappings:
m.mergeDescriptorRepository(globalRepository);

}

private DescriptorRepository loadFuzzyDescriptorRepository(){
DescriptorRepository dr = new DescriptorRepository();
// load descriptor repository...
return dr;

}
//...

}

The loadFuzzyDescriptorRepository method simply carries out the
processing of the fuzzy schema description residing in a XML file, similar
to that described in [18]. For convenience, a globalRepository reference
is maintained in the aspect instance, facilitating processing of issues only
related with fuzzy data descriptions by invoking other methods in the as-
pect. It should be noted that neither inheritance nor reflection would have
been enough to make this change without modifying existing libraries, since
at least the getInstance method of MetadataManager would had to be
changed to instantiate a new subclass or build it dynamically.

3.2 Describing imperfect-data elements

The current interface of DescriptorRepository makes use of ClassDescriptor
for the object–relational mapping descriptions, which in turn uses FieldDescriptor
to specify the storage of class attributes. Both elements could be extended
to their fuzzy counterparts through subclassing, and other conceptual data
elements like associations [19] can be derived from the common super–class
DescriptorBase which is an open–ended hook for them, that only pro-
vides a basic descriptive functionality. The last version of OJB has declared
ClassDescriptor as final, which then forces to have a workaround of this

10



design. The alternative is that of using directly DescriptorBase.
Imperfect-Class and Imperfect-Attribute concerns can be imple-

mented by extending the ClassDescriptor and FieldDescriptor classes
respectively with methods to query for the data mapping of the membership
degrees, required to implement querying and storage functionality. Figure
2 depicts some of the details of such extension as a UML diagram.

-m_TableName

ClassDescriptor

+getAttribute()
+setAttribute()

-attributeMap

DescriptorBase

+getComparator()

-m_ColumnName
-m_ColumnType
-m_IsKeyField

FieldDescriptor

-m_PersistentField

AttributeDescriptorBase

1 *

Future Extension...

+isExtensional()

-m_MembTableName
-m_MembColumnName

FuzzyClassDescriptor

FuzzyFieldDescriptor

+getMembership(in Key)

FunctionObject

0..1

-m_Left
-m_Center
-m_Right

FuzzyNumericFieldDescriptor

Future Extension...

Figure 2: Extension of OJB metadata description classes

As showed in Figure 2, the AttributeDescriptorBase is used as an in-
termediate extension point for persistence mappings that are not necessarily
relational, while FieldDescriptor provides the specific details of the rela-
tional mapping. FuzzyFieldDescriptor is provided as the base class for any
relational–mapping of imperfect attributes, and FuzzyNumericFieldDescriptor
is one of its subclasses representing the mapping for (triangular) fuzzy num-
bers. FuzzyClassDescriptor encapsulates the details for the relational
mapping of fuzzy classes and sub–classes, with the possible variants de-
scribed in [18]. Extensional mappings store explicitly the membership de-
grees for each object in the database, while intensional mappings provide a
FunctionObject instance encapsulating arbitrarily complex computations
of membership degrees for the class. In this latter case, Java’s reflection
capabilities enable the specification of a FuzzyObject subclass in the con-
figuration file that is instantiated dynamically at run–time.

11



3.3 Basic fuzzy storage

Object storage both in ODMG and JDO mappings proceeds in cascade, storing
the graph of references starting from the object being stored. For example,
JDO provides a method makePersistent in the PersistentManager inter-
face to make concrete instances persistent, and it also provides persistence
by “reachability”, so that any instance linked to a persistent one (tran-
sitively) is also made persistent. The underlying core OJB API ultimately
uses the store methods in the PersistenceBroker interface to resolve those
calls, which explicitly handles also the storage of Collection implementing
classes.

The storage of fuzzy classes only requires code modifications for exten-
sional fuzzy classes, in which membership degrees are explicitly stored. To
do so, variants of the store methods with an additional parameter are re-
quired. Aspectj introductions can be used to accomplish such extension,
avoiding subclassing such a complex class like PersistenceBrokerImpl.
The aspect can be targeted to the interface PersistenceBroker to guaran-
tee that future implementation classes also are provided with fuzzy storage
methods. The following code fragment sketches such extension for the sim-
pler of the definitions of store:

package org.apache.ojb.broker.core.fuzzy;

import org.apache.ojb.broker.core.*; import
org.apache.ojb.broker.metadata.*;

public aspect FuzzyStorageHandling{
public void PersistenceBroker.store(java.lang.Object obj, Double m,

String fuzzyClass)
throws PersistenceBrokerException;

// introduces a new implementation:
public void PersistenceBrokerImpl.store(java.lang.Object obj, Double m,
String fuzzyClass) throws PersistenceBrokerException {

store(obj);
storeMembership(obj, m, fuzzyClass);

}

public void PersistenceBrokerImpl.storeMembership(
java.lang.Object obj, Double m, String fuzzyClass)

12



throws PersistenceBrokerException {
// Obtain descriptor:
FuzzyClassDescriptor cld = (FuzzyClassDescriptor)

descriptorRepository.getDescriptorFor(fuzzyClass);

if (cld.isExtensional()){
// call access layer to store m...

}
}

}

The fuzzyClass attribute is required since a single object may belong to
more than one fuzzy class with different degrees, i.e. multiple classification
outside of the capabilities of the programming language is assumed.

The storage of fuzzy attributes is delegated in PersistenceBrokerImpl
to a JdbcAccess interface which acts as a layer encapsulating the con-
struction of SQL sentences from metadata descriptors and actual objects
to be stored. Its existing implementation JdbcAccessImpl uses sequences
of calls to getXStatement and bindXStatement (where “X” stand for in-
sert, delete, etc.) on the instance of StatementManagerIF provided by
PersistenceBroker.serviceStatementManager(). The delegation chain
can be followed through the StatementManager — responsible for the value
binding process — class to the StatementsForClass interface and im-
plementation – which only provides caching for statement templates —
and to the SqlGenerator interface and implementation, which actually
build the SQL queries from class descriptions by delegating to a num-
ber of classes, one for each type of SQL sentence. In consequence, it is
in the SqlUpdateStatement where the actual sentence creation logic re-
sides, where it can be seen that no modification is required to store fuzzy
classes, since it relies in the (extended through polymorphism) behavior of
ClassDescription.

In contrast, the storage of fuzzy fields as those described by FuzzyNumericFieldDescriptor
require dynamic extension of the methods appendListOfColumns and appendListOfValues
since they assume a single table column for each field. This can be accom-
plished by an aspect design as the one sketched in what follows:

package org.apache.ojb.broker.accesslayer.sql.fuzzy; import
org.apache.ojb.broker.core.*;
//...
public aspect FuzzySqlFieldHandling{

13



List around (SqlInsertStatement i):
target(i) && args(cld) && args(buf)
&& call(List SqlInsertStatement.appendListOfColumns(

ClassDescriptor cld, StringBuffer buf)){
List aux=null;
try{

aux = proceed(m, cld, buf);
}catch(Exception e){throw e;}

if (cld.getClass().equals(
new FuzzyNumericFieldDescription().getClass())){
// add columns to SQL INSERT in buf...
return l;

}
}
// ...

}

The around advice is able to dynamically extend the behavior of the
SQL–forming methods by manipulating parameters and return values. In
common fuzzy extensions, this is basic a matter of providing additional
definitions for holding the membership values.

3.4 Fuzzy querying through aspects

The abstract SqlQueryStatement class and its concrete subclass SqlSelectStatement
together implement the generation of SQL SELECT clauses from queries.
Queries for fuzzy classes and fuzzy attributes can be formed by extending
getStatement invocations by using an around advice and an implementa-
tion technique similar to the one described above for insertions.

In addition, it is required that the membership degrees of the result
collections are differentiated from standard attributes of the objects. To
do so, query results returning from methods like getCollectionByQuery
in PersistenceBroker need to be wrapped into objects representing pairs
(o, µq(o)). This must be done at the level of the implementation of the
method getCollectionByQuery in PersistenceBrokerImpl since member-
ships come from the access layer as conventional retrieved database columns.

public aspect FuzzyObjectWrapping{
Collection around (PersistenceBroker p):

target(p) && args(cld) && args(buf)
&& call(Collection PersistenceBroker.getCollectionByQuery(Query query))

14



{
Collection aux=null;
try{

aux = proceed(p, query);
}catch(PersistenceBrokerException e){throw e;}
return this.wrapResultCollection(aux);

}
// ...

}

The drawback of this approach is that it wraps every call to getCollectionByQuery,
but it can be easily avoided by introducing a method in PersistenceBroker
that allows for switching on/off the wrapping, which could be consulted in
the code of the aspect (concretely, through parameter p). Moreover, fuzzy
criteria instead of crisp ones can be introduced by extending the Criteria
class and associated code. This can be accomplished alternatively by intro-
ducing additional methods to Criteria or by subclassing it.

Fuzzy query results can be processed by casting to a class representing
the pairs, resulting in a programming idiom like that described in [21]:

it = e.fuzzyIterator(); while (it.hasNext()){
FuzzyObject aux = (FuzzyObject) it.next();
X anX = (X) aux.getObject();
double mu = aux.getMembership();
// do processing...

}

4 Example: Adding Fuzzy Classes and Fuzzy Num-
bers to OJB

The general design issues provided in the previous section can be used to
implement a wide range of fuzzy extensions. In this section, we focus on
two simple extensions for the sake of illustration, providing some important
implementation details. Concretely, we will extend OJB with fuzzy classes
and fuzzy numbers as attributes of classes, so that simple flexible queries
can be issued through standard means. The domain used as a case study is
that of market segmentation under fuzziness, taken from [20]. A conceptual
model for the basic definitions in the case study is provided in Figure 3.

In Figure 3 customers are instances of CustomerBase, and the estimated
value of their relationship with the company is described from the marketing

15



-criteria

«fuzzy»
CustomerSegment

«fuzzy»
BZ

«fuzzy»
MGC

«fuzzy»
MVC

«fuzzy-function» +getRelationshipNetValue()

-name
-contactDetails

CustomerBase

-period#

Period

«fuzzy-number» -expectedIncrementalContrib
«fuzzy-number» -estimatedTrajectory

CustomerEstimations*

*

Figure 3: Main conceptual model elements in the market segmentation case
study

perspective in terms of estimations about duration (loyalty) and estimated
increase in purchase volume for each period in the medium–term forecast.
Both estimations are imprecise fuzzy numbers (triangular for the sake of
simplicity) as marked by the stereotype <<fuzzy-number>>. The net value
of their relationship is computed from those estimations by an algorithm
producing also imprecise results (<<fuzzy-function>>), and this value is
used by a process of fuzzy clustering not covered here that produce fuzzy
classes BZ (below zero), MGC (most growable customers) and MVC (most
valuable customers).

The system then uses the values for a sequences of periods to compute
the membership degree of each customer for each of the classes (as in [20]),
storing it in a explicit, extensional way, since marketing experts are able to
change them due to other factors that may affect the relationship trajectory.

The storage of the example is used by specifying an XML schema like
the following:

<class-descriptor class="CustomerEstimations"
table="CUSTOMER_EST" >
<field-descriptor

name="expectedIncContrib"
column="EXP" left="EXP0" right="EXP1" type="FuzzyNumeric"
att-left="left" att-center="center" att-right="right"
primarykey="false" />

...
</class-descriptor>
<class-descriptor class class="MGC"

table="MGC" type="fuzzy" extensional="true"

16



membershipTable="CUSTOMER_BASE" membershipField="MGC">
...

</class-descriptor>

Basically, schema definitions are OJB–like schemas with extended data
mapping attributes and elements intended to be processed by loadFuzzyDescriptorRepository.
Fuzzy attributes (numbers) are mapped in the simplest way, by explicitly
declaring the properties of the class that hold the left, center and right
points describing the fuzzy number, so that the appropriate getX() meth-
ods could be invoked through reflection in the access layer. More complex
approaches can be devised to include classes representing by themselves
fuzzy data types.

The storage of explicit membership degrees for imprecise segments is
done through sentences like the following:

PersistenceBroker.store(cust,
computeMVC(cust.getRelationshipNetValue()), "MVC");

Where computeWC represents the classification criteria mentioned above.
The fuzziness of attributes is stored automatically by the extended access
layer as described above.

Queries can be issued to the persistence layer by standard means pro-
vided in the core interfaces. For example, the following query returns a fuzzy
subset of “BZ” (a subset of the crisp class CustomerBase) that has values
(approximately) greater than 4.3.

broker.wrapFuzzySubsets();
Criteria criteria = new Criteria();
criteria.addGreaterOrEqualThan("expectedIncContrib", new Double(4.3));
QueryByCriteria query = new QueryByCriteria(CustomerBase.class, criteria, "BZ");
Collection results = broker.getCollectionByQuery(query);

It should be noted that higher–level interfaces like Jdo can be used al-
ternatively to carry out fuzzy queries. For example, the following Jdo query
returns the fuzzy subset of MVC filtered (in a crisp way) by state and area.

String filter =
"contactDetails.state == state && " +
"contactDetails.area > area";

Extent extent = pm.getExtent(CustomerBase.class, true,
"asc;fuzzySubset=MVC"); Query query = pm.newFuzzyQuery(extent,

17



filter); ((FuzzyQuery)query).interpretAllFuzzy();
query.declareParameters(

"String state, String area ");
Collection result = (Collection)query.execute(

"Georgia", "200");

I the above example, the “MVC” string encoded in the parameters to
getExtent is used to specify the class descriptor associated to the actual
Java class CustomerBase, and the interpretAllFuzzy() method explicitly
forces the wrapping of query results for membership processing, as described
in the previous section.

5 Conclusions and Future Work

Fuzziness can be considered as a separate cross–cutting concern in existing
software, and in consequence, AOD techniques provide a convenient frame-
work to implement fuzzy extensions to existing libraries. The consideration
of generic information imperfection concerns can be introduced at require-
ment analysis time, so that such early specification is later transformed to
detailed design decisions.

As a proof of concept for such approach, the AOD extension of the OJB
libraries using aspectj has been described, along with a concrete case study
regarding implementations of class and attribute concerns for fuzziness. The
resulting design combines inheritance and aspects to come up with an exten-
sion that entails no modifications to existing OJB source code. Concretely,
metadata processing is weaved at initialization and querying times, and poly-
morphism is used to provide alternate metadata and query result processing
idioms that handle fuzziness, achieving full backwards compatibility with
existing client code. The approach taken are dependant on the non–public
parts of the libraries, which entails that structural change of those parts will
force a change in the aspects developed. However, since refactoring code is
currently becoming standard practice in Software Engineering, the changes
could be expected to be properly documented, serving as a blueprint for
changing the extensions thereafter.

Future work is needed to implement with the same techniques the range
of existing mathematical models and frameworks for imperfection handling.
In addition, it may be desirable to seamlessly integrate fuzzy database
mapping with conceptual modelling tools based on variants of the UML[17],
which would result in improved traceability of the concerns of imperfection
throughout the software life cycle.

18



From a broader perspective, further work is required in the layering and
more convenient factoring of persistence interfaces for the many existing per-
sistence interfaces. In any case, research on engineering information imper-
fection — and more concretely fuzziness — as aspects provides a promising
direction in the application of fuzzy technologies to practical problems that
require complex software.

References

[1] Atkinson, M. P., Daynes, L., Jordan, M.J., Printezis, T., Spence, S.:
An Orthogonally Persistent Java. ACM Sigmod Record, 25, 4 (1996).

[2] Berzal, F., Cubero, J.C., Maŕın, N. and Pons, O.: Enabling Fuzzy
Object Comparison in Modern Programming Platforms through Re-
flection. In: T. Bilgiç, B. de Baets and O. Kaynak (eds.): “Fuzzy Sets
and Systems”, Lecture Notes in Artificial Intelligence, LNAI 2715, pp.
660–667 Springer Verlag, 2003

[3] Bosc, P., Pivert, O.: Fuzzy Querying in Conventional Databases, In:
Zadeh, L., Kacprzyk, J. (eds.): Fuzzy Logic for the Management of
Uncertainty. John Wiley, New York (1992) 645–671

[4] Buckles, B.P., Petry, F.E: A Fuzzy Representation of Data for Rela-
tional Databases. Fuzzy Sets and Systems 7 (1982) 213–226

[5] Callens, B. de Tré, G., Verstraete, J., Hallez, A.: A Flexible Query-
ing Framework (FQF): Some Implementation Issues. Lecture Notes on
Computer Science 2869: Proceedings of International Symposium of
Computer and Information Sciences (ISCIS) 2003, 260–267.

[6] Chen, G. Fuzzy logic in data modeling : semantics, constraints, and
database design, Kluwer Academic Publishers, 1998.

[7] De Caluwe, R. (ed.): Fuzzy and Uncertain Object-Oriented Databases,
Concepts and Models. World Scientific, Singapore (1997)

[8] Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A Server for Fuzzy
SQL Queries. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.):
Lecture Notes in Artificial Intelligence (LNAI), Vol. 1495, Springer-
Verlag, Berlin Heildelberg New York (1998) 164–174

[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns.
Elements of Reusable Object Oriented Design. Addison Wesley (1995)

19



[10] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Gris-
wold, W.G.: “An Overview of AspectJ”. In: Proc. of the European
Conference on Object-Oriented Programming (ECOOP) (2001)

[11] Grundy, J. Aspect-Oriented Requirements Engineering for Component-
based Software Systems. In Proceedings of the 4th IEEE International
Symposium on Requirements Engineering. IEEE Computer Society
Press (1999): 84–91.

[12] Kaufmann, A., and M. M. Gupta. Introduction to fuzzy arithmetic:
theory and applications. New York: Van Nostrand Reinhold, 1985.

[13] Klir, G., Wierman, M.: Uncertainty-Based Information: Elements of
Generalized Information Theory. Springer-Verlag (1998).

[14] Rashid, A., Sawyer, P., Moreira, A. and Araujo, J. Early Aspects: A
Model for Aspect-Oriented Requirements Engineering. In Proceedings
of the IEEE Joint International Conference on Requirements Engineer-
ing. IEEE Computer Society Press. (2002): 199–202.

[15] Russell, C. et al (2001). Java Data Objects (JDO) Version 1.0 proposed
final draft, Java Specification Request JSR000012 (2001).

[16] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. ”Analysis
of Recommender Algorithms for E-Commerce”. In proceedings of the
ACM E-Commerce 2000 Conference. Oct. 17-20, 2000, pp. 158-167.

[17] Sicilia, M. A., Garćıa-Barriocnal, E., Gutiérrez, J. A. (2002). Integrat-
ing fuzziness in object oriented modelling languages: towards a fuzzy-
UML. In: Proceedings of the International Conference on Fuzzy Sets
Theory and its Applications (FSTA 2002), 66-67.

[18] Sicilia, M.A., Garćıa-Barriocanal, E., Dı́az, P. and Aedo, I.: Extend-
ing Relational Data Access Programming Libraries for Fuzziness: The
fJDBC Framework. In: Proceedings of the 5th International Conference
on Flexible Query Answering Systems. Lecture Notes in Computer Sci-
ence 2522, Springer (2002):314–328

[19] Sicilia, M.A., Gutiérrez, J.A., Garćıa-Barriocanal, E. (2002). Designing
Fuzzy Relations in Orthogonal Persistence Object-Oriented Database
Engines. Advances in Artificial Intelligence - IBERAMIA 2002, Lecture
Notes in Computer Science 2527 Springer, 243-253

20



[20] Sicilia, M.A., Garćıa-Barriocanal, E. On Fuzziness in Relationship
Value Segmentation: Applications to Personalized e-Commerce. ACM
SIGECOM Newsletter, 4(2):1–10.

[21] Sicilia, M.A., Garćıa-Barriocanal, E., Gutiérrez, J.A. (2004). Introduc-
ing Fuzziness in Existing Orthogonal Persistence Interfaces and Sys-
tems. In: Advances in Fuzzy Object-Oriented Databases: Modeling
and Applications, IDEA Group Publishing (to appear).

[22] Sicilia, M.A., Garćıa-Barriocanal, E. (2004) On imperfection in infor-
mation as an ”early” crosscutting concern and its mapping to aspect-
oriented design. Early Aspects 2004: Aspect-Oriented Requirements
Engineering and Architecture Design Workshop. Vancouver

[23] Sicilia, M.A., Garćıa-Barriocanal, E. (2006) Extending object database
interfaces with fuzziness through aspect–oriented design. ACM SIG-
MOD record, June 2006.

[24] Smets, P.: Imperfect information: Imprecision-Uncertainty. Uncer-
tainty Management in Information Systems: From Needs to Solutions.
Kluwer Academic Publishers (1997), 225-254.

[25] Sutton Jr., S.M. and Rouvellou, I. Modeling Software Concerns in Cos-
mos. In Proceedings of the First International Conference on Aspect–
Oriented Software Development (AOSD 2002), Enschede, The Nether-
lands, Apr. 2002, ACM Press, 127-133.

[26] Sutton Jr, S.M. and Rouvellou, I.: Applicability of Categorization The-
ory to Multidimensional Separation of Concerns. In: Proceedings of the
Workshop on Advanced Separation of Concerns, OOPSLA 2001, Octo-
ber 14, 2001, Tampa, Florida.

[27] Sutton Jr., S. M. and Tarr, P.: “Aspect-Oriented Design Needs Con-
cern Modeling”. In: Proc. of the Aspect Oriented Design Workshop on
Identifying, Separating and Verifying Concerns in the Design (2002),
Enschede, The Netherlands.

[28] Tekinerdogan, B. ASAAM: Aspectual Software Architecture Analysis
Method. In Proceedings of the Aspect–Oriented Requirements Engi-
neering and Architecture Design Workshop, Boston, US, 2002.

[29] Wedel, M., Kamakura, W.A. 1999. Market Segmentation: Conceptual
and Methodological Foundations, Kluwer Academic Publishers, 2nd
edition.

21



[30] Yazici, A., George, R., Aksoy, D. (1998). Design and Implementation
Issues in the Fuzzy Object-Oriented Data Model. Information Sciences,
108, 1-4, 241–260

[31] Zadrozny, S., Kacprzyk, J: FQUERY for Access: Towards Human Con-
sistent Querying User Interfaces. In: Proceedings of the 1996 ACM
Symposium on Applied Computing (SAC’96) (1996) 532–536

22



Table 1: Example imperfection–related concerns in a basic market segmen-
tation setting.

Instances Classes/classifications Description
Expected-
Incremental-Purchases

SubjectiveUncertainElement,
Domain-Imperfection, Imper-
fectAttribute

Expectations reflect uncer-
tainty regarding the future,
and they are estimated in this
case in a purely subjective
way. The uncertainty can be
considered to be inherent to
the domain of forecasting, and
they are represented as uncer-
tain values, thus modelled as
attributes.

Estimated-
Relationship-Duration

SubjectiveUncertainElement,
Domain-Imperfection, Imper-
fectAttribute

The same as the above.

Relationship-Value ImpreciseElement, System-
Imperfection, ImperfectResult

The value of a relationship is
the result of a computation in-
volving the above elements. In
this case, the value is used as
certain but with a degree of
imprecision that comes from
the uncertainty in its compo-
nents, and the subjective ad-
justment of the parameters of
the computation algorithm. It
is the system that computes
the values which produces the
degree of imprecision.

Customer-Segment FuzzyElement, System-
Imperfection, ImperfectClass

Segments are fuzzy sets of cus-
tomers computed from avail-
able data.

Customer-Similarity FuzzyElement, System-
Imperfection, ImperfectAsso-
ciation

Similarity is represented as a
relation between pairs of cus-
tomers, with a given level
of “strength” imprecisely com-
puted from the segments and
other available data.

Net-Relationship-
Value-Model

FuzzyElement, System-
Imperfection, ImperfectFunc-
tion

This represents an algorithm
that computes Relationship-
Values during time with esti-
mated values for discount and
inflation.

23


