
Ontologies of Software Artifacts and Activities: Resource Annotation and
Application to Learning Technologies

Miguel–Angel Sicilia1, Juan-José Cuadrado1 and Daniel Rodrı́guez2

1University of Alcalá, Madrid (Spain)
{msicilia,jjcg}@uah.es

2 University of Reading, UK
d.rodriguezgarcia@reading.ac.uk

Abstract

The emerging consensus on the boundaries and main el-
ements of the Software Engineering (SE) discipline repre-
sents an opportunity for the engineering of shared concep-
tualizations that may serve both to design automated tools
and tasks that help in diverse phases and aspects of the soft-
ware process, and also to annotate learning–oriented re-
sources. Formal ontologies provide an appropriate logics–
based framework for such conceptual models. This paper
describes the main ontological commitments that underlie
the Onto-SWEBOK project, focusing on how SE artifacts
and activities can be represented. The paper also discusses
how semantic annotations can be provided for learning re-
sources oriented to the initial and continuing education on
the discipline, which enables the reuse of such resources in
diverse learning designs.

1. Introduction

The 2004 Guide to the Software Engineering Body of
Knowledge (SWEBOK1) is a significant milestone in reach-
ing a broad agreement on the content of the Software En-
gineering discipline. The SWEBOK is aimed at develop-
ing a consensus in what constitutes “validated”, rational
and scientific Software Engineering (SE) knowledge. As
such, it represents a concrete, shared view of the discipline
that rests on a collection of interrelated concepts. How-
ever, the current form of the SWEBOK uses natural lan-
guage text and technical narrative to describe the main el-
ements and boundaries of the discipline. While this is ap-
propriate for human communication, a formalized version
of the text is required for the development of diverse tools
that use computational semantics [15] to manage, search
and trace diverse kind of SE resources or representations.

1http://www.swebok.org

Formal ontologies are engineered artifacts aimed at repre-
senting a shared, consensual conceptualization of a given
domain [9]. Description logics [2] and extensions are the
underlying representation framework for ontologies as they
are used in the so–called Semantic Web applications [3]. In
consequence, the engineering of a formal ontology repre-
senting the SWEBOK would enable knowledge reuse and a
standardized model for the cataloguing of SE artifacts. In
addition, the process of ontology engineering could be used
as a tool for revision of the SWEBOK, considering that on-
tological analysis methods [19, 4] are aimed at clarifying
the conceptual structures and properties of a given domain.

Previous work have addressed some aspects of engineer-
ing formal representations of SE elements. Falbo et al [7]
reports on the use of shared conceptualizations for inte-
grated tool development, and Althoff et al [1] describe an
architecture oriented to reuse of experience in SE that uses
ontologies as the underlying formalism. Deridder et al have
used ontologies for the specific purpose of linking artifacts
at several phases of the development process [5]. Nonethe-
less, the knowledge representation underlying these systems
are conceptual models aimed at enabling concrete function-
ality, and not oriented to describing the main ontological
commitments [19] of the discipline. The SWEBOK project
opens new possibilities to ontology engineering in the field
of SE, since it represents a shared consensus on the con-
tents of the discipline and provide pointers to relevant lit-
erature on each of its concepts, which are two important
elements in ontology engineering [9, 17]. Existing research
has provided insight in ontological representation problems
on some of the areas of the SWEBOK [20] and on the tech-
niques used for ontological representation [12]. Neverthe-
less, work is still needed in the analysis of the main ontolog-
ical commitments of SE as a discipline, and the representa-
tion of both its “upper” concepts and the resources that refer
to them.

In this paper, the use of formal ontologies as a tool to



annotate software entities and associated resources is de-
scribed. Here the term “entity” is used to refer to existing
elements (be them physical or temporal), and “resource” is
used to refer to information bearing things that can be re-
lated to concept describing SE entities. The concrete ap-
proach described is based on a layered ontological structure
that facilitates meta–description (even with languages that
lack such logical facility), and it is flexible enough to ac-
commodate a diversity of applications that deal with entities
or resources. The use of annotations connected to the on-
tology of SWEBOK as a means to devise reusable learning
materials is provided as an example of the latter.

The rest of this paper is structured as follows. Section
2 provides the core ontological elements of the ontology of
SWEBOK developed as part of the Onto-SWEBOK project.
Then, Section 3 describes how actual entities and any kind
of discourse about them can be represented. Then, Section
4 sketches the main elements of the integration of the ontol-
ogy described with existing learning technology standards.
Finally, conclusions and future research directions are pro-
vided in Section 5.

2. Ontological representations of SWEBOK
Activities and Artifacts

Engineering sciences are mainly concerned with design,
e.g. as described by Mitcham “designing is a special kind
of activity that so far has found almost no place in what is
known as the “philosophy of action”, that is, the reflective
analysis of the distinctive characteristics of human behav-
ior” [13]. In consequence, it deals with purposeful activ-
ities that use and create artifacts. Then, the core classes
subsuming the rest of the more concrete concepts and rela-
tionships in the ontology of SE should somewhat deal with
artifacts created by agents as a result of codified activities
guided by rules. All these elements can be found in current
large commonsense knowledge bases as OpenCyc (the open
source version of Cyc [11]). The following list provides the
mapping of these elements (OpenCyc terms are prefixed by
“oc ”)

• Developers in a generic sense, including “intelli-
gent” systems that aid in the process can be con-
sidered as instances of oc IntelligentAgent,
“agents capable of knowing and acting, and of em-
ploying their knowledge in their actions. An in-
telligent agent oc knowsAbout certain things, and
its oc beliefs (and possibly oc goals) concern-
ing those things may influence its actions. [...]
an intelligent agent might be a single individual or
might consist of a group of individual agents (see
oc MultiIndividualAgent).”

• Activities in OpenCyc can be regarded as oc Action
“The collection of oc Events that are carried out by
some ”doer” (see oc doneBy). Instances of Action
include any event in which one or more actors effect
some change in the (tangible or intangible) state of the
world, typically by an expenditure of effort or energy.”
An oc Event is in turn “a dynamic situation in which
the state of the world changes; each instance is some-
thing one would say ‘happens’.” Moreover, engineer-
ing activities are in fact oc PurposefulActions,
“Each instance of PurposefulAction is an action con-
sciously, volitionally, and purposefully done by at least
one actor”. In addition, the notions of design and de-
signing actions in OpenCyc extend these definitions to
activities oriented to produce oc Specifications
which are a prominent category of artifacts in the do-
main of SE.

• An oc Artifacts is “an at least partially tan-
gible thing which was intentionally created by an
oc Agent (or a group of Agents working together)
to serve some purpose or perform some function.”

• Rules in a general sense include in the SE do-
main prescribed sequences of actions, desired char-
acteristics of artifacts and general organizational con-
straints. These rules are of diverse nature, and in
OpenCyc they would be regarded as instances of
oc SupposedToBeMicrotheory, which group
together assertions that describe how things are “sup-
posed to be” according to some source.

The use of the just described conceptual framework to
the descriptions of each SWEBOK Knowledge Area (KA)
in the first chapter of the book resulted in the tentative iden-
tification of elements as those provided in Table 2. The
method for elicitation was simply that of contrasting lit-
eral definitions in the SWEBOK Guide to the categories
described above.

The examination of the “Requirements” KA is illustra-
tive of some of the main ontological commitments of the
activity–artifact framework:

i A clear distinction should be drawn between Artifacts
and “real world” entities. From a pragmatic ontolog-
ical perspective, “real things” are not necessarily tan-
gible, in the sense that they are not made of matter,
and they are not definitely created by any kind of SE
IntelligentAgent. A relevant example is a user need.
Nonetheless, in many cases we are only concerned
with the representations, since they are the only infor-
mation we have about the “real” entities, e.g. the sys-
tem bound is not a physical frontier but the delimitation
of the system as represented in stakeholder’s desires.



KA Action Artifact Other
Requirements (Requirements) elicitation,

analysis, specification, valida-
tion and management

Requirements document (System and software)requirement,
requirements engineer (agent), re-
quirement source, system bound, re-
quirement conflict

Design Change management activity,
quality analysis

requirement-back-link (trace),
architecture blueprint

Persistence, event, design pattern,
object-oriented method (rules), qual-
ity attribute, design notation

Construction Coding, testing source code file, unit test de-
scription

Complexity reduction, diversity antic-
ipation (rules)

Testing Verification activity Test case, test-related measure Defect, verification technique (rule)
Maintenance Enhancement process Change request, incident re-

port
Anomaly

Configuration
Management

Software configuration iden-
tification, software configura-
tion status accounting

Configuration, version record Identification scheme

SE Management Organizational management,
scope definition, planning

Project plan, function point
count

Gantt notation, tracking assessment
criterion

Process Qualitative process analysis,
process implementation

Process model Software Lifecycle

Quality Formal review Review report Quality attribute

Table 1. Main actions and artifacts (produced by SE actions) in the KA

ii Parts of artifacts are information bearing things
(oc IBT) that are representations of other elements.
For example, a use case diagram is an artifact that in-
cludes representations of requirements and their intrin-
sic relationships.

iii Actual actions should be differentiated from meth-
ods or other prescriptions of sequences of actions.
Methods in OpenCyc can be represented through
oc methodForAction predicates connecting an
action with an action sequence that describes an appro-
priate method for carrying out the action. This way, re-
quirement elicitation techniques can be separated from
the the actual events that conform the process followed
in a specific project.

iv Rules should be separated in microtheories that are
only constrained to be internally consistent. Each
microtheory may represent a different position on
methodological issues, e.g. “extreme” versus “tradi-
tional” development, reflecting the changing nature of
many SE approaches.

Commitment [i] above is useful for the encoding or
rules implicit in statements like “examining the require-
ments document to ensure that it defines the right system
(i.e. the system that the user expects)”. This is a clear case
in which the distinction becomes important from a method-
ological perspective. In addition, artifacts are rigid entities

with a clear mereology of parts, according to OntoClean
definitions [19], while real world entities are not necessar-
ily characterized that way.

The action-event dichotomy described above is sufficient
for the representation of temporal events that represent a
change in the engineering context. However, other The
IEEE Std 610.12 - 1990 document defines process as “a se-
quence of steps performed for a given purpose”, procedure
as “a course of action to be taken to perform a given task”, a
technique as “technical and managerial procedures that aid
in the evaluation and improvement of the software devel-
opment process”, and method standard as “a standard that
describes the characteristics of the orderly process or pro-
cedure used in the engineering of a product or performing
a service”. These definitions have a degree of ambiguity, so
that the generic method term will be used to subsume the
other three concepts.

3. Annotating Software Engineering Artifacts
and Activity Descriptions

The Artifact and Action terms are the
subsumers of SE results and activities respec-
tively. EngineeredArtifacts are by necessity
producedBy some EngineeringAction. This is a
form of traceability by which the objectives of activities
become explicit.

A layered approach to the ontology is depicted in Figure



1, with upper concepts representing those that can be found
in knowledge bases like OpenCyc.

Three parts of the ontology should be clearly differen-
tiated. The description part groups the T-box and A-box
(in terms of description logics [2]) that characterize arti-
facts and activities as created and enacted by actual SE
practice. These could be used for process representation
as in [7], and constitute by themselves a form of ontology
of actual software configuration items, and a comprehen-
sive record of activities that could be used for tracking in
project management. On the contrary, the prescriptive part
deals with a different aspect of reality, which comprises the
approaches or rules to concrete practical activities that are
“commonly accepted” as considered in the SWEBOK. Even
though a degree of consensus exists for them, nothing pre-
vents the possibility of conflict and inconsistency. For ex-
ample, two process models may differ in the importance
they give to some artifacts or activities (“extreme” and agile
approaches as compared with classical ones are a relevant
example). In addition, several competing techniques may
exist for some actions from which there is not a strong ev-
idence about which one is the “right” one. The Cyc [11]
concept of “microtheory” allows the grouping of different
methodological or pragmatical standpoints, providing the
flexibility required for an evolving discipline as SE. In this
context, methods in a general sense are the rules that tell
something about how to carry out sequences of Actions.

An additional aspect of the SWEBOK as a knowledge
base is the representation of resources. Here the term re-
source is assimilated to that of IBTs that provide infor-
mation about the rest of the elements of the ontology (i.e.
they are essentially dependent on them [19]). Two classes
of resources are distinguished. The literature on SE is the
compendium of IBTs that describe elements of the dis-
cipline, and as such, links from ontology terms and in-
stances are provided through a reification technique as that
described in [17]. Resources in general are any IBT or
ConceptualWork that predicates on elements of the SE
ontology. Both parts enable the straightforward building
of concept browsers that use ontology–based seeking tech-
niques [8] to locate resources or to go from resources to
concepts or instances. This cross-linking provides the in-
frastructure for technique of analysis as the one described
by Wille et al. [20].

The concept of “annotation” in ontology–based repre-
sentations does not require a fixed data schema prescribing
some “fields” that should be filled for item depending on its
type. On the contrary, any axiom or property inside the on-
tology can be considered a predication that describes some-
thing useful from a broad view of semantics [15]. In con-
sequence, the ontological descriptions of all the elements
described can be considered as annotations in themselves.
For example, the representation of a requirements docu-

ment as an instance of the corresponding class would have
as annotations all other predicates inside the ontology that
refer to it. If only a part of them would be desired to be
used, a simple mechanism providing “super–slots” could
be applied, i.e. high-level predicates or relations that sub-
sume the ones that are considered. For example, a prop-
erty trace-relation could be used as a subsumer of
the variety of relations that may be interpreted as carriers of
information about traceability as derivedFrom between
artifacts or scheduledIn between activities (e.g. activi-
ties that are scheduled as the result of a meeting discussion).

4. Integrating Standardized Learning Tech-
nologies with the Ontology of SWEBOK

Current approaches to Web–based learning are based on
the concept of learning object, for which several definitions
have been proposed. Reusability is considered to be an es-
sential characteristic of the concept of learning object as the
central notion for modern digital learning content design.
For example, Polsani [14] includes reuse in his definition
of learning object as “an independent and self-standing unit
of learning content that is predisposed to reuse in multiple
instructional contexts”, and Wiley [21] also mentions the
term in his learning object definition “any digital resource
that can be reused to support learning”. Existing work has
dealt with the integration of that concept in OpenCyc [18].
Learning objects by definition are described by metadata
records. IEEE LOM [10] is a relevant standard that deter-
mines a collection of metadata fields for learning objects.

Given the above ontological structure,
LearningObject is a defined concept that repre-
sents anti–rigid entities subsumed by IBT that become
learning resources by virtue of the declaration of their
possible educational usages. It is of special relevance to
consider that every digital Artifact represented is by
itself a learning resource, at least as an exemplar of an
element of the discipline. The annotations provided in the
sense described in the previous section could be used to
decide on their use in learning activities. But this view is
loose with respect to automated reuse, since the annotations
are descriptive rather than normative in the sense described
by Sánchez-Alonso and Sicilia [16]. This calls for an
additional layer in the ontology that explicitly targets
learning objectives. The following provides an illustration
on such additional representation based targeting examples
relevant to the IEEE/ACM Computing Curricula 2001
(CC2001).

“Software requirements and specifications” is a core
topic in CC2001, and the the differentiation between func-
tional and non-functional requirements is one of the skills
to be acquired. A learning object covering such element
could provide some brief description of the topic (thus



Figure 1. Overall structure of the ontology

being self-standing and of lower granularity as recom-
mended in [14]) and then provide an adaptive part which
takes from an ontological A-box (which we assume to
have the representation of several software projects) an
instance of Functional-Requirement and another
of NonFunctional-Requirement from the same
Project. The approval status of the requirements in
the project would act as a filter for selecting only “cor-
rect” requisites. In addition to this, the non-functional
requirement could be restricted to be connected to some
QualityAttribute instance (e.g. efficiency or
usability) to highlight such relation, while a trace to
derived artifacts could be showed for the functional one
(reaching the final source code if available). Note that this
kind of designs for learning reuse actual SE results.

Following the example, the learning object thus designed
would provide the following normative usage conditions ex-
pressed in terms of a contract [16]:

• The learner should know some basic material, e.g.
the lrn.knows(con-req-def) precondition is
required, stating that the concept of software requisite
should be previously mastered by the learner.

• The postcondition should state the (expected) in-
crease in understanding of what functional and non-
functional means for requisites. This correspond with
the intention of the (9.1.) Purpose metadata element in
the IEEE LOM standard [10].

In addition, the kind of resource (LOM 5.2. element)
should be set to “illustration” as a specific kind of resource

that exemplifies through project data. These and other meta-
data elements enable the dynamic selection of learning ob-
jects for concrete situations, including informal training.
For example, the above learning object could be selected au-
tomatically by a CASE tool as a help item in a requirement
tool, or it may be selected as part of a degree on Computer
Science covering the contents of the CC2001.

Since normative definitions as the above do not preclude
the same object to be described for a different usage (in the
sense of Downes’ resource profiles [6]), the labor of learn-
ing design in this context would benefit of an unprecedented
level of reuse, including referencing to available and rele-
vant actual professional practice results.

5. Conclusions and Future Research Directions

A core set of concepts borrowed from OpenCyc has been
used to delineate the main ontological commitments of an
approach to the ontology of SE as a disciplined artifact–
creating discipline. The descriptive versus prescriptive as-
pects have been differentiated, and the dichotomy between
representations in artifacts as documents and the actual “re-
ality” has been described as a way to state rules of a general
kind. This basic structure may be extended or modified in
further work, but in any case it serves as a foundation for
research on the topic.

Such kinds of discipline–oriented ontologies provide a
clear value in their applicability to facilitate education and
training, since they can be used as tools for metadata an-
notation. This paper has discussed this with reference to
describing learning objects.



Ongoing work in the Onto-SWEBOK project should ad-
dress many ontological definitions that are not currently ex-
plicit in the Guide to the SWEBOK. The use of existing
large conceptualizations and common ontological analysis
techniques will be used to eventually come up with a ontol-
ogy of SE based on notions of engineering as technology–
creating endeavors.

References

[1] Althoff, K.-D., Birk, A., Hartkopf, S., Müller, W.,
Nick, M., Surmann, D. and Tautz, C. (2000). Sys-
tematic Population, Utilization, and Maintenance of a
Repository for Comprehensive Reuse. In G. Ruhe and
F. Bomarius (eds.), Learning Software Organizations -
Methodology and Applications, Springer Verlag, Lec-
ture Notes in Computer Science, LNCS 1756, 25-50

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi,
D., Patel-Schneider, P. (eds.). (2003). The Description
Logic Handbook. Theory, Implementation and Appli-
cations, Cambridge.

[3] Berners-Lee, T., Hendler, J., Lassila, O. (2001). The
Semantic Web. Scientific American, 284(5), 34-43.

[4] Brachman, R. (1983). What IS-A Is and Isn’t: An
Analysis of Taxonomic Links in Semantic Networks.
IEEE Computer 16(10), 30-36.

[5] Deridder, D., Wouters, B., Lybaert, W. (2000). The
Use of an Ontology to Support a Coupling between
Software Models and Implementation. In Proceedings
of the International Workshop on Model Engineering,
14th European Conference on Object-Oriented Pro-
gramming (ECOOP).

[6] Downes, S. (2004). Resource Profiles. Journal of In-
teractive Media in Education, 2004 (5).

[7] Falbo, R.A., Natali, A. C. C., Mian, P. G., Bertollo,
G., Ruy, F. B. (2003). ODE: Ontology-based software
Development Environment. In Proceedings of the “IX
Congreso Argentino de Ciencias de la Computación”,
1124-1135.

[8] Garcia, E. and Sicilia, M.A. (2003). User Interface
Tactics in Ontology-Based Information Seeking . Psy-
chnology e-journal 1(3), 243-256.

[9] Gruber T. (1995). Towards principles for the design of
ontologies used for knowledge sharing. International
Journal of Human-Computer Studies, 43(5/6), 907-
928.

[10] IEEE LTSC (Learning Technology Standards Com-
mittee). (2002). Learning Object Metadata (LOM).
IEEE 1484.12.1-2002.

[11] Lenat, D.B. (1995). Cyc: A Large-Scale Investment
in Knowledge Infrastructure”. Communications of the
ACM 38(11) 33–38.

[12] Mendes, O., Abran, A. (2004). Software Engineer-
ing Ontology: A Development Methodology. Metrics
News, 9, 68-76.

[13] Mitcham, C. (1994). Thinking through Technol-
ogy: The Path between Engineering and Philosophy.
Chicago: University of Chicago Press, xi, 397.

[14] Polsani, P. R. (2003). Use and Abuse of Reusable
Learning Objects. Journal of Digital information,
3(4).

[15] Seth, A. et al.(2005). Semantics for the Semantic Web:
The Implicit, the Formal and the Powerful. Intl. Jour-
nal on Semantic Web and Information Systems 1(1),
1-18.

[16] Sánchez-Alonso, S. and Sicilia, M. A. (2005). Norma-
tive Specifications of Learning Objects and Learning
Processes: Towards Higher Levels of Automation in
Standardized e-Learning. International Journal of In-
structional Technology and Distance Learning, 2(3),
3-12.

[17] Sicilia, M.A., Garcia, E., Aedo, I. and Diaz, P. (2003).
A literature-based approach to annotation and brows-
ing of Web resources. Information Research 8(2).

[18] Sicilia, M.A., Garcı́a, E., Sánchez, S. and Rodrı́guez,
E. (2004) Describing learning object types in ontolog-
ical structures: towards specialized pedagogical selec-
tion. In Proceedings of ED-MEDIA 2004 - World con-
ference on educational multimedia, hypermedia and
telecommunications, 2093-2097.

[19] Welty, C. and Guarino, N. (2001) Supporting onto-
logical analysis of taxonomic relationships. Data and
Knowledge Engineering 39(1), 51-74.

[20] Wille, C., Abran, A., Desharnais, J.M., Dumke,
R.R. (2003). The quality concepts and subconcepts in
SWEBOK: An ontology challenge , in Proceedings
of the 2003 International Workshop on Software Mea-
surement (IWSM), 113–130.

[21] Wiley, D. A. (2001). The Instructional Use of Learn-
ing Objects. Association for Educational Communica-
tions and Technology, Bloomington.


