
1

The Evaluation of ontological representations of the SWEBOK as a revision tool

Miguel-Ángel Sicilia, Juan-José Cuadrado, Elena García, Daniel Rodríguez2 and José R. Hilera

1Computer Science Department,
University of Alcalá, Spain
2University of Reading, UK

{msicilia, jjcg, elena.garciab}@uah.es, d.rodriguez-garcia@reading.ac.uk

Abstract
The SWEBOK represents an important milestone in
reaching a broad agreement on the contents of the
Software Engineering discipline. Formal ontologies thus
become a tool to represent such agreement in a logics-
based framework for a number of applications. In this
paper, the use of common ontological criteria in the
<Onto-SWEBOK> project is described as a useful
assessment tool. The use of such concepts and a
disciplined approach to representing terms and relations
has resulted in a tentative structured revision procedure
for SWEBOK material that could be used as a technique
for improving or restructuring definitions. The main
elements of the technique are described, along with
illustrative examples of its potential application as a
revision tool.

1. Introduction

The 2004 Guide to the Software Engineering Body of
Knowledge (SWEBOK) is a significant milestone in
reaching a broad agreement on the content of the software
engineering discipline. Even though the project is not
explicitly targeted at providing a common Software
Engineering vocabulary, the usage of a clear and well-
defined terminology is of paramount importance to
eliminate ambiguities in any description of what
constitutes the essential knowledge of the discipline.
Natural language prose is useful for an efficient
communication, but some applications require a higher
level of formality of definition. For example, the
cataloguing of learning resources or the mapping of
vocabularies from different information sources require
precise definitions, or at least significant
characterizations that help in deciding which terms to use
in practical situations. The IEEE Std 610.12-1990,
labeled “IEEE Standard Glossary of Software
Engineering Terminology” is a well-known attempt to
provide precise characterizations of the main terms in the
field. Nonetheless, it still fails in providing a clear
demarcation for each of the concepts. For example,

software development lifecycle is defined as “The period
of time that begins with the decision to develop a
software product and ends when the software is
delivered”. While this is understandable for human
readers, ontologically it identifies lifecycles with
TimeIntervals as defined in OpenCyc (the open
source version of the Cyc knowledge base [6]).
Considering this would be a common ontological error,
since, for example, this definition would result in that
comparing lifecycles would become a problem of
comparing time intervals, i.e. the definition does not
capture the essence of what a software lifecycle is. The
concept of Action in OpenCyc captures much better the
core characteristics of the concept. As defined in
OpenCyc, Events (the constituents of actions) “should
not be confused with instances of TimeInterval. The
temporal bounds of events are delineated by time
intervals, but in contrast to events time intervals have no
spatial extent.”

These kinds of ontological considerations require a
disciplined approach to representing the SWEBOK. The
<Onto-SWEBOK> project aims at engineering ontologies
consistent with SWEBOK descriptions, as a framework
for a number of concrete practical objectives. These
objectives include the creation of ontology-based
metadata records for learning objects [2], the provision of
explicit "integration points" with other existing
commonsense ontologies like OpenCyc, and the formal
description of common Software Engineering frameworks
like the Unified Process in terms of more generic
conceptualizations, as a means to compare them. The
<Onto-SWEBOK> method for ontology engineering
combines standard practices [4] carried out in working
teams with a literature-based approach [3] that helps in
formally documenting and justifying the decisions made
in connection with the text of the SWEBOK 2004. The
ontology engineering work carried out to date includes
the general terms found in all the Knowledge Areas and a
complete study of the Requirements, Software
Engineering Process, Software Engineering Management
and Software Configuration Management. Practical

2

problems found in the course of the engineering process
have raised the need for a formal evaluation framework of
ontology engineering decisions. The OntoClean [1, 5]
method and general ontological considerations have been
used for that purpose. The technique has proved useful in
revealing some common problems in the process, and
helped in a more rigorous inquiry of the kind of entities
that were being modeled.

This has resulted in a technique that can be applied
systematically to the SWEBOK text for ontology creation
and review. Such technique could be used as a structured
revision procedure for SWEBOK descriptions, useful in
revealing ambiguities or excessively shallow definitions.
In this paper, a sketch of such a revision technique is
described and proposed as a formal evaluation tool for
SWEBOK reference material.

The rest of this paper is structured as follows. In Section
2, the overall assessments method inside the <Onto-
SWEBOK> project are described, illustrating some of the
relevant problem types identified. Then, a revision
procedure for SWEBOK material based on those
evaluations is described. Finally, conclusions and
possible directions for further work are provided in
Section 4.

2. Engineering and Assessing SWEBOK-
based ontologies

The SWEBOK provides a particular kind of narrative
style in which terms are usually first introduced
informally at the beginning of each Chapter, and then
they are further explained in the rest. In addition, it uses
citations to well-known reports, book and papers as a way
to give external coherence to the concepts explained. In
consequence, the SWEBOK can not simply be translated
in a paragraph basis to ontological structures, since its
definitions are not formal and require a degree of human
interpretation and recurring to the literature explicitly
cited. This is in fact a form of literature-based approach
to description [3] that must be preserved in the crafting of
the associated ontology. In addition, many terms and
concepts explained appear several times thorough the
book, which raises the need for consistency checks
between parts of the book, with cross-referencing
techniques like those used by Wille et al. [8].

The role of methodology for the engineering of the
SWEBOK ontology has been emphasized elsewhere [7].
Nonetheless, here we are concerned with basic
ontological assumptions and organizational principles that
should be accounted for at the very beginning of the
ontology engineering process. These principles serve as

review criteria for the Guide in the sense that they
provide a minimal classificatory framework to frame
existing, modified and future concepts and relations.

The first important consideration is that Software
Engineering should be considered as an artifact creation
discipline. This leads to an important difference between
artifacts and the reality they represent. Artifacts are in
terms of OpenCyc information bearing things (IBTs) that
are either components of the final system or maps
oriented to the development of these components (e.g.
diagrams, specifications). This is an important
classification criterion that should be tested first. Two
important issues must be considered with regards to this:

• Artifacts are distinct from the entities they
represent, i.e., a Requirement is different form a
StatedRequirement, being the latter a tangible
artifact. Ontologically, the latter may not reflect
perfectly the former, and this is an important fact
to be recorded in actual processes, and not a
mere accident. Artifacts have a clear mereology
depending on the kind of product (e.g.
document, source code, etc), so that their unity
conditions [1] can be clearly stated.

• The software configuration as a support process
in Software Engineering can be considered as an
essential aspect of the discipline. This leads to
the fact that every Artifact under such control is
provided with an identity condition, i.e. the
configuration identification.

Activities in Software Engineering are of a diverse nature.
Nonetheless, all of them can be considered as
PurposefulActions (following OpenCyc terms),
since they are carried out by IntelligentAgents.
These agents are humans or systems capable of
“knowing”, and they can also be groups of them. The
concept of intelligent agent covers the role of the
developer, and all the variety of its roles. Actions are
sequences of Events and both concepts provide enough
flexibility to model the wide diversity of concepts that
relate to activities in the SWEBOK, including processes,
technical procedures, steps or phases and so on. In any
case, the actual activities carried out must be clearly
distinguished from their specifications, which are rules
that describe them. Activities are an important part of the
SWEBOK, and each of them should be categorized from
its early recognition in several dimensions, including: (a)
kind of action and constituent actions, (b) artifacts
created, modified or used, (c) agent roles involved, and
(d) general rules prescribed. This is similar to process
modeling, but differs in that it attempts to model both
reality and possibilia, so that the criterion for inclusion is
describing objects actually existing or specifications that
bear a prescriptive (or eventually comparative) interest.

3

Other important ontological commitment is the
representation of prescriptive knowledge. A concept of
Method is available in OpenCyc as a way to relate actions
required to accomplish other actions, but this is not rich
enough to reflect all the varieties of prescriptive
knowledge that appear in the SWEBOK. A concept of
Rule can be used to subsume all of them, but
specializations would require more detailed schemes.
Rules may be inconsistent or contradictory with others,
reflecting different theoretical or pragmatic viewpoints on
ordering actions, ways of arranging or structuring
artifacts or ways of producing them. This is an inherent
characteristic that would require a separation of
viewpoints in the final ontology. Even though the
SWEBOK is intended to cover “accepted knowledge”,
supposedly consistent, actual instances or concrete cases
may not have such coherence.

3. Ontological evaluations as a revision
procedure for SWEBOK

The revision procedure that follows from the above
mentioned assessment elements has been synthesized in a
number of steps that are depicted in Figure 1.

Figure 1. Main elements of the ontology creation
approach.

The procedure begins with a selection of the SWEBOK
Guide as a target. Given the conceptual density of the
writing of the Guide, small chunks no longer than a few
pages are better suited for small ontology engineering
teams with a concentrated effort schedule. The concepts
in the “upper” part of the SWEBOK, as those described
in the above section, serve as template for the rest of the

process. Once the selection is made, two alternatives are
possible:

• Ontology representation. Terms and relations
are identified and represented in description
logics (e.g. using the Protègè tool) by cross-
referencing the terms in the chunk. The links
with a large ontology must be documented or
made explicit inside the ontology. Here both the
ontology of SWEBOK and the representation of
the Guide book are represented, and links are
provided from terms in the former to instances
on the latter. Principles and analysis techniques
like [1] should be taken into account in this
procedure.

• Ontology analysis. This procedure is comprised
by a part in which the ontology terms are
assessed, and other in which the links to the
book representations are used for cross-analysis
as in [8]. Both parts operate on the T-box of the
ontology. In addition, a case-based assessment is
used as a complement. This consists on
populating the A-box of the ontology with
concrete cases of the terms and relations, using
real-world processes, models and artifacts.
Moreover, learning resources are annotated with
instances in the ontology (including reified terms
as described in [3]) to provide a more intuitive
understanding for future revisions.

It should be noted that analysis is not only concerned with
the use of reasoners or consistency checkers but with the
assessment of ontological decisions. The resulting
structure enables different “external” reviewer roles (in
addition to the engineers responsible for the process): (a)
software engineering experts, that will use ontology-
seeking interfaces to assess terms and instances, (b)
educators and learning designers, that will browse
annotated learning resources, and (c) ontology experts,
navigating the whole structure and its connections to
other ontologies.

These procedures enable the iterative refinement of the
ontology. A useful but expensive technique following this
procedure is that of assigning the same SWEBOK Guide
chunk to two separate teams, providing a basis for
comparison and critique on ontological decisions.

4. Conclusions and Future Research
Directions

The engineering of an ontology based on the Guide to the
SWEBOK is able to providing insights in the revision of
the Guide itself. We have described some core
ontological commitments adopted in the <Onto-

4

SWEBOK> project, and a review method based on that
experience has been described.

Ongoing work in the ontology of SWEBOK should
ideally provide feedback for the Guide itself. Future work
should continue the current ontology development efforts
combined with ontology-based seeking interfaces [9].
This would also help in the ongoing revision of the
ontology and the Guide.

5. References

[1] Guarino, N. and Welty, C. Evaluating ontological
decisions with OntoClean. Communications of the ACM
45(2), 61-65.
[2] Polsani, P. R. (2002). Use and abuse of reusable
learning objects. Journal of Digital Information, 3(4).
[3] Sicilia, M.A., García, E., Aedo, I. and Díaz, P.
(2003). A literature-based approach to annotation and
browsing of Web resources. Information Research 8(2).

[4] Ushold M. & Gruninger M., (1996), Ontologies:
Principles, methods and applications, in The Knowledge
Engineering Review, 11 (2): 93 – 155.
[5] Welty, C. and Guarino, N. Supporting ontological
analysis of taxonomic relationships. Data and Knowledge
Engineering 39(1), 2001, pp. 51-74.
[6] D.B. Lenat, Cyc: A Large-Scale Investment in
Knowledge Infrastructure'. Communications of the ACM
vol. 38, no. 11, pp. 33--38, 1995.
[7] Mendes, O., Abran, A., Software Engineering
Ontology: A Development Methodology, in Metrics News
,vol. 9 , 2004 , pp. 68-76 .
[8] Wille, C., Abran, A., Desharnais, J.M., Dumke, R.R.
(2003). The quality concepts and subconcepts in
SWEBOK: An ontology challenge, in International
Workshop on Software Measurement (IWSM), Montreal,
pp. 113--130.
[9] García, E. & Sicilia, M.A. (2003). User Interface
Tactics in Ontology-Based Information Seeking.
Psychnology e-journal 1(3):243-256.

