
Designing Adaptive Mobile Applications:
Abstract Components and Composite Behaviors

Manuel Prieto2,1 and Miguel A. Sicilia2

1 Telefónica I+D.
C/. Emilio Vargas, 6 – 28043 Madrid, Spain

mjpm@tid.es
2 Computer Science Department. Carlos III University.

Avda. de la Universidad, 30. – 28911 Leganés, Madrid, Spain
{mprieto, msicilia}@inf.uc3m.es

Abstract. Current commercial software frameworks for the develop-
ment of mobile applications targeted at heterogeneous devices are based
on a paradigm of abstract user interface components (or ‘controls’) that
change its rendering depending on device characteristics. In this paper,
we approach the problem of extending that paradigm to handle adap-
tiveness to user models for the purpose of improving usability. A generic
approach along with its concrete realization on ASP.NET technology is de-
scribed. The approach is centered on the notion of componentized adap-
tive behaviors, that can be easily added to user controls by designers.
These components can also be chained to come up with more complex
behaviors. In addition, some experiences on the automatic, rule-based
dynamic addition of such behaviors to concrete controls based on usage
data are described.

Keywords. Heterogeneous mobile devices, abstract user interface compo-
nents, adaptive hypermedia.

1 Introduction

The design of applications for mobile clients poses significant problems derived
from two essential constraints [1]. On the one hand, these devices usually pro-
vide limited display and interaction capabilities and, on the other hand, their
characteristics are widely diverse. Limitations and heterogeneity entail that the
tasks that should be analyzed for such systems are different from those found
in desktop computers [3], and, as a consequence, the design of the interface
must follow different priorities. In this context, adaptiveness becomes an impor-
tant feature in mobile applications, since it increases navigation efficiency, as has
been addressed in previous studies like [6]. In an effort to cope with heterogeneity
in limited devices, some industrial user interface development frameworks have
been crafted recently. Most notably, Microsoft’s Mobile Internet Toolkit (MIT)3

and Java Micro Edition4 provide a programming paradigm based on what may
3 http://www.gotdotnet.com/team/mit/
4 http://java.sun.com/j2me/

be called ‘abstract user interface components’ (AUIC), which in essence are com-
mon interface components (e.g. lists, labels) that are prepared to be rendered
— and even reshaped — in different ways depending on the characteristics of
the device interacting with them. In this paper, a model for the development of
adaptive interfaces for heterogeneous and limited devices is described, explicitly
targeted towards AUIC-based frameworks. A concrete instantiation of the model
on the MIT framework is also described — both the model and the implemen-
tation are based on previous work described in [4]. The most salient feature of
our approach is that adaptiveness is associated to abstract components, easing
the design of personalized interfaces by means of the possibility of selecting and
arranging some generic adaptive behaviors for specific component instances. In
addition, an initial exploration on the automatic selection of adaptive behaviors
based on usage data has been approached. The rest of this paper is structured
as follows. In Section 2, the principal elements of our model are described in
abstract terms. Section 3 sketches the concrete realization of the model on top
of the MIT framework, along with a brief description of some concrete automatic
adaptation functionality. Finally, conclusions and future research directions are
provided in Section 4.

2 A Model of Composable Adaptive Behaviors

An abstract model of AUIC for personalized mobile applications must provide
modelling constructs for describing devices, interface components and users. In
addition, it must provide a paradigm for expressing adaptations. Devices can be
described by device profiles in the form ℘x = {(pi, vi)|pi ∈ P ∧ vi ∈ type(pi)},
where P denotes a set of device parameters (capabilities) defined in a pre-existing
ontology — as the FIPA device ontology5— and type(p) denotes the type of the
parameter (e.g. integer, string, set, sequence). Parameters may describe software
(e.g. operating system), hardware (e.g. memory, screen height, resolution) or
network (e.g. quality of service) characteristics. A generic attribute-based user
model can be specified by considering in a similar way a set U = {um} where
al(uj) denotes the collection of attribute–value pairs describing the concrete user.
Our model of the structure of the application is limited to describing the AUIC
components in set C that contains, in the form A = {ck|ck ∈ tx}, where tx ∈ T
denotes an specific component type in the set of types T . As usual in component
frameworks, each component type is described by a set of predefined attributes
denoted by at(tx). Types and subtypes may be interrelated in a generalization–
specialization hierarchy so that if type b specializes type a, denoted by a Â b,
then at(a) ⊂ at(b). Following the above definitions, our AUIC–centric paradigm
describes adaptation in terms of an ordered sequence of behaviors attached to
each specific component:

b(c) = b1, . . . bl, l ≥ 0, c ∈ t, ti ∈ T (1)
5 FIPA Device Ontology Specification, doc. number XC00091C, available at

http://www.fipa.org.

Each bi in expression (1) represents a software entity that transforms the
state of component c by changing some of the values of the attributes in at(t).
Behaviors are also typed, so that each bi has a type h ∈ B. In addition, each type
of behavior h is associated to exactly one type of component in c(h) ∈ T . By
virtue of this association, behaviors of type h can only be applied to components
of that type. Composability can be easily introduced as simple rewriting, so that
a sequence of behaviors br . . . bs can be labelled as bq, so that the new label
functions as a higher-level, more complex behavior that sequentially applies its
contained elements. It should also be noted that order is important in (1) since
the order of processing bi, bj need not produce the same final result than the
order bj , bi. In general, behaviors produce a change in its associated control
dependant on device characteristics and the characteristics of the current user
(or characteristics of one of the groups to which he/she belongs), which can be
denoted abstractly as b : 2U×C×℘ → C ′. All the definitions given above can be
easily recognized in current commercial mobile development frameworks, and in
consequence, they provide a basis for extending them in a straightforward way,
as will be demonstrated in what follows.

3 MIT Implementation of Adaptive Behaviors

Microsoft’s Mobile Internet Toolkit (MIT) provides a server runtime that allows
the automatic adaptive presentation of Web contents to a number of supported
devices. Adaptation is based on a set of mobile server controls, which are an
abstraction of the rendering and interaction features of specific languages like
WML and cHTML (the approach is similar to that of [2] although their scope is
different). In our extension of the MIT, application designers can add personal-
ization behaviors by simply typing it in the control’s definition. For example, the
following code fragment shows the declaration of an abstract component (p ∈ C,
with b(p) = f2, f5) that specializes a list, called PersonalizedList. Note that
two behaviors f5 and f2 are specified in one of the attributes.

<mobile:Form id="Form1" runat="server"> <shadow:PersonalizedList

id="p" runat="server" NAME="p_1" behaviours="f2;f5">

<Item Text="Palacio de la Prensa" Value="http://www.pmc.es/" />

<Item Text="Benlliure" Value="http://www.benlliurecines.es/" />

...

</shadow:PersonalizedList> </mobile:Form>

Behaviors (in T) are defined in a separate XML file with the following ap-
pearance:

<behaviors-def> <behavior>

<name>f1</name> <desc> Discard visited links. </desc>

<class>MobilePrb1.DeleteVisitedBehavior</class>

<file>C:\\Inetpub\\wwwroot\\M1\\MobilePrb1.dll</file>

<type>PersonalizedList</type>

</behavior> <behavior> <name>f2</name> ...

Each behavior definition contains its name and description, the class that
realizes the personalization, the physical file in which the code is located and
the abstract control class it can adapt. This programming model also allows
to customize the behaviors without recompilation. Customized mobile server
controls can be defined by simply subclassing them. For example, the component
called System.Web.UI.MobileControls.List can be subclassed to carry out the
adaptation of lists. The following C# code fragment illustrates it.

public class PersonalizedList: System.Web.UI.MobileControls.List {

private void Page_Load(object sender, System.EventArgs e) {

GeneralPage page = (GeneralPage) this.Page;

ListPersonalization persEngine = new ListPersonalization();

MobileListItemCollection result =

persEngine.getPersonalizedList(this.Items, page.userId,

page.Request.Path, behaviours, restr_disp);

while (this.Items.Count > 0){ this.Items.RemoveAt(0); }

foreach (MobileListItem it in result){

it.Value="ListRedirect.aspx?dest=" + it.Value +

"&page=" + page.Request.Path + "&user=" + page.userId;

this.Items.Add(it);

}

this.ItemsAsLinks = true; }

Basically, the ListPersonalization class encapsulates the behaviors that
depend on the model of the user, which is identified by the userId attribute.
The collection of behaviours is extracted from the declaration of the control (like
the one showed before). The collection called restr disp of device capabilities
is obtained from the run-time information provided by ASP.NET. Note also that
the items in the list are changed to ListRedirect.aspx so that the navigation of
the user is recorded. Behaviors can be aggregated according to the Composite
Filter pattern [7]. The pattern is embedded in the call to getPersonalizedList,
and the reflective capabilities of the .NET framework are used to dynamically
instantiate and invoke the filters.

public MobileListItemCollection getPersonalizedList (

MobileListItemCollection items, string userid, string page,

string behaviours, MobileCapabilities capabilities)

{ ArrayList b = behaviorsParser(behaviours);

foreach (string be in b) {

items = doFilter(items, userid, page, be, capabilities);}

return items; }

Access to the user model server (or a wrapper to existing ones) is implemented as
a standard-based Web Service, allowing for the federation of user model servers
(details are not covered here).

Behaviors can be selected by designers to improve user experience according
to their knowledge of the context of each specific control instance. But in some
cases, the system may be able to automatically set (or rearrange) behaviors.
Currently, we have formalized some of these updates through rules of two types:
(a) oriented towards performance, e.g. given that o is a sorting behavior and d is

a behavior that removes items in a list: {oi, dj} ⊆ b(c) ⇒ i ≥ j to avoid unneces-
sary sorting processing time, and (b) based on usage patterns. The second cate-
gory aims at direct improvements of usability and require heuristic approaches.
For example, some lists show highly volatile information (like soccer scores), so
that once consulted by the user, they’re rarely re-visited, and they also change
frequently. This usage pattern may be detected whenever periodical variations
are detected, and most users do not consult the list more than once, resulting
in chaining a ‘remove once visited’ behavior to the list. Sorting behaviors are
another case of automatic behavior chaining. Given a static list control l ∈ C,
sorting can be activated if the following rule holds: ∃l.itemi, most visits(l.itemi)
or ∃l.itemi, l.itemj , visits(l.itemi) mgt visits(l.itemj) signifying that there ex-
ist items that receive most of the visits or there are large differences in usage for
different items. Quantifier most and the expression ‘much greater than’ (mgt)
are implemented as described in [5] through fuzzy sets.

4 Conclusions and Future Work

A component-based model has been described for extending AUIC frameworks
with control-oriented adaptation. The model can be easily implemented in ex-
isting commercial frameworks, and a case study of a MIT-based implementation
has been sketched. Future work should deal with the automatic selection of be-
haviors and also with adaptations involving more than one control.

References

1. Billsus, D., Brunk, C.A., Evans, C., Gladish, B and Pazzani, M: Adaptive Interfaces
for Ubiquitous Web Access. Communications of the ACM 45(5) (2002):34–38

2. Gaedke, M., Segor, C. Gellersen, H.W.: WCML: Paving the Way for Reuse in
Object-Oriented Web Engineering. In: Proceedings of the 2000 ACM Symposium
on Applied Computing (SAC 2000), (2000):19-21

3. Landay, J.A. and Kaufmann, T.R.: User Interface Issues in Mobile Computing. In:
Proceedings of the 4th Workshop on Workstation Operating Systems (1993):40–47

4. Prieto, M. and Sicilia, M.A.: Designing Agent-Based Personalized Filtering Behav-
iors for Heterogeneous Mobile Internet Devices. In Proceedings of the 1st Inter-
national Workshop on Practical Applications of Agents and Multiagent Systems
(2002):125–134

5. Sicilia, M.A., Dı́az, P., Aedo, I. and Garćıa, E.: Fuzzy Linguistic Summaries in
Rule-Based Adaptive Hypermedia Systems. In: Proceedings of the 2nd International
Conference on Adaptive Hypermedia and Adaptive Web Based Systems (2002):317–
327

6. Smyth, B. and Cotter, P.: Personalized Adaptive Navigation for Mobile Portals. In:
Proceedings of the 15th European Conference on Artificial Intelligence Prestigious
Applications of Intelligent Systems (2002)

7. Yacoub, S.M.: A Versatile Filter Pattern. In: Proceedings of the EuroPLoP 2001
Conference, Irsee, Germany, 4-8 July (2001)

