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Summary. Generalization-specialization (gen-spec) relationships between pairs of
classifiers can be assigned a grade of strength or relative distance, somewhat rep-
resenting the level of similarity between the class and its subclass. In many cases,
these distances can not be adequately computed from the structural features or
properties of the classifiers, since class-subclass discrimination semantics are often
not represented explicitly, and distances can only be properly assessed subjectively
by humans. In this work, we describe a novel approach that uses resemblance re-
lations to model graded specializations, both from a specific classifier (locally) and
also along a subset of the generalization hierarchy (globally). We also show how that
approach can be combined with current Web-enabled ontology description languages
to carry out adaptive behaviors that involve crawling the gen-spec hierarchy.

Key words: Generalization/specialization relationship, subtyping, ontology,
resemblance relations, RDF

1 Introduction

The concept of generalization (and its inverse specialization) plays a central
role in current approaches to knowledge representation using ontologies, in
general-purpose object-oriented modelling notations (like the Unified Model-
ing Language, UML [12]), and also in other related fields like object-oriented
databases [11] or programming languages. In addition, the resulting taxonomic
relations have been integrated within reasoning in approaches like many-sorted
logic [10], order-sorted logic [2] and description logic [6]. Generalization (often
called ‘is-a’ or generalization/specialization – gen-spec –) is a relation between
classes (or classifiers, in a more generic sense) that implies a taxonomic rela-
tion, and its subsequent inheritance semantics. This notion has been studied
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in the field of object-oriented programming and design under the name of
type/subtype relation, and the essential property has been considered to be
the subtype requirement [8], according to which if f(x) is a property provable
about objects x of type T , then f(y) should be true for objects y of type S,
where S is an specialization of T (this is essentially the same interpretation
underlying subsumption [2]). This basic assumption appears in one form or
another in all the above mentioned fields. Without breaking that requirement,
some approaches allow a specialization to have an empty set of extensions. For
example, the Daml+Oil ontology markup language [7] allows the subclass
relation between classes to be acyclic (while the Rdf [14] language do not),
providing a way to assert class equality, but this can be considered an extreme
case.

The common understanding of the ‘is-a’ relation considers it as ‘all-or-
nothing ’, in the sense that the relation is equally strong between a class and
any of its subclasses, and also at every level of the hierarchy. This assumption
is in many cases an oversimplification of the psychological account of the
real-world relations we are modelling. In other words, some sub-classes can
be considered to be closer to a given super-class than others. As a somewhat
extreme example, let’s suppose we have a hierarchy rooted in the mammal class,
with sub-classes domestic-cat, and primate, and siamese-cat as a subclass
of domestic-cat. We can (subjectively) consider that the first specialization
level represents a bigger step than the second, and that the distance from the
abstract mammal category to primate is somewhat shorter than its distance to
domestic-cat1 (in the sense that the latter is a more specific category, while
the former is still rather abstract). Most current gen-spec semantics simply
neglect this fact, resulting in a subtle problem of epistemological adequacy
(using the term in the sense given in [9]).

As a second example, let’s suppose a Web shopping recommender agent
is operating on the Unspsc2 product ontology to recommend items to the
user according to a set of products the user is believed to like. If a user
has a preference on the class Pianos, the agent may crawl to its direct
superclass Keyboard-instruments, and then try to show related products
by going down in the hierarchy to Musical-organs and Accordions. The
distance at that level can be considered short, in comparison to crawl-
ing the generalization level from Keyboard-instruments to its superclass
Musical-instruments, and in turn, this latter level is somewhat at a shorter
distance than the one from Musical-instrument to the general category
represented by the class Musical Instruments, Recreational Equipment,
Supplies and Accessories (which include disparate products categories like
fitness equipment and toys). In consequence, the agent would tend to crawl

1 Obviously, this example is an oversimplification of the mammals taxonomy, but
analogous cases are very often found in other contexts.

2 See http://www.unspsc.org
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shorter levels more than larger ones, since the recommendation proximity of
the products decrease as distance from the superclass increases.

A third example is the class Bulldozer in the Cyc Transportation On-
tology3, which is a subclass of the classes named RoadWork-Vehicle and
TransportationDevice-Vehicle. Intuitively, it’s clear that the first super-
class is closer to the class than the latter, and thus, an agent would decide to
take the first path – before the second – in a shallow reasoning process.

The just presented notion of ‘graded’ specializations has been somewhat
addressed at the instance level in fuzzy conceptual modelling, by constraining
the membership grades of a fuzzy subclass [5], with a threshold that represent
the minimum distance from the superclass. But it would be more convenient
to separate it clearly from that notion of fuzzy subclass and deal with it at the
class-level, to enrich conceptual definitions with semantics that can be used
with no regard to the instance level.

In this work, we describe the semantics of an approach to generalization in
ontologies that allows the definition of graded specializations at the class (or
term) level, measuring how much a classifier specializes a more general con-
cept (that is, a distance notion). In Section 2, the problem is described, and
resemblance relations are proposed as a measure for closeness between classes
in classifier hierarchies. Section 3 describes how these fuzzy resemblance mea-
sures can be integrated in a modern ontology definition language and sketches
a simple scenario that takes advantage from them. Finally, conclusions and
future work are provided in Section 4.

2 Resemblance as a Metric for Specialization Distance

We’ll denote a generalization relationship (or link) between two classifiers in
the universal set C of classifiers as (informally) defined in (1).

a Âd b a, b ∈ C (1)

d = {φi(a, y) | a Âd y ∧ y ∈ C} (2)

The discriminator d determines the taxonomic criterion that justifies the
relationship, and can be represented in the most general case by a set of pred-
icates (2) – one for each direct specialization – that determines the specific
properties of the instances of each subclass. Each of the predicates φi char-
acterize one of the subclasses discriminated, and these characterizations can
be expressed (for example, discriminating by ranges, ‘a viola is a alto string-
instrument’, while ‘a violin is a treble string instrument’, and so on with the
3 A modified version of the Cyc’s taxonomy of transportation devices has been

used as a case study for the approach described in this paper. It’s available at
http://opencyc.sourceforge.net/daml/cyc-transportation.daml



4 Miguel-Ángel Sicilia, Elena Garćıa, Paloma Dı́az, and Ignacio Aedo

cello - tenor - and the bass). Note that on a single specific (super-)class, an ar-
bitrary number of discriminators d1, d2, . . . , dn can be defined, corresponding
to different specialization criteria.

Discriminators are considered to be predicates on the structure of the
involved classifiers, but in practice, they are often denoted simply as a set
of constants or labels. That is, an specific discriminator dj is not described
as a set of predicates, but as the simple enumeration of the subclasses that
participate in the discrimination (3). We’ll use this definition from here on,
for simplicity’s sake.

dj = {c1, c2, . . . ck}, ci ∈ C (3)

This approach correspond to the way in which they are represented in the
UML by the discriminator meta-attribute in meta-class Generalization [12].

For example, the Cyc Transportation Ontology includes the concepts
of RoadVehicle-Electric, RoadVehicle-ICE (internal-combustion-engine),
Bus-RoadVehicle, Automobile and Motorcycle, as subclasses of the class
RoadVehicle. At least two discriminators originate the taxonomy at that
level. The first and second subclasses can are clearly discriminated by motor-
type (4), while the third, fourth and fifth are chiefly distinguished by the room
they provide for passengers (5) (according to the ontology documentation),
so that we have two discriminators that originate from RoadVehicle).

dmotor−type = {RoadVehicle− Electric, RoadVehicle− ICE} (4)
droom = {Bus− RoadVehicle, Automobile, Motorcycle} (5)

Given a classifier, its specialization links to its direct subclasses are di-
vided in disjoint sets (partitions), according to their discriminators. Each
partition represents an orthogonal dimension of specialization, and as such,
should be handled separately. P denotes the set of (local) partitions of
a model or ontology defined on a set C of classifiers (6). For example,
p(motor−type,RoadVehicle) = {RoadVehicle− Electric, RoadVehicle− ICE}.

P = {p(d,a) | a ∈ C} where p(d,a) = {c | c ∈ C ∧ a Âd c} (6)

Mechanisms can be devised for which an estimation of resemblance mea-
sures can be automatically obtained [13]. For example, the number of varying
structural features from class to subclass could be used as a metric [1]. But
all these mechanisms are inherently flawed in practical settings since common
conceptual models have incomplete contextual information items that often
are not encoded in the model itself (i.e. hierarchy modelers abstract many
details that would be needed for the measure of specialization distance, since
many specializations seems obvious for them). Therefore, for practical reasons,
it would ultimately be required that a human (the modeler or even the users



Representation of Concept Specialization Distance 5

of the model) gives an assessment of specialization measures. But humans find
it difficult to give such measures in a global way, since distance is a relative
concept.

We have designed a number of small experiments (using the above men-
tioned ontologies) to gather some evidence about how people tend to assess
the relative distance between classes and subclasses. Results have leaded us
to sketch an approach for the task, which involves human assessments at two
levels:

• At a micro-level, in which the distance between a class and its subclasses
for a specific discriminator (i.e. for a specific partition p ∈ P ) is assessed.

• At a sub-tree level, in which distances (obtained at the micro-level) inside
a hierarchy tree including descendants of a given classifier are somehow
‘harmonized ’ (we do not cover this level in detail in this paper).

Due to the subjective nature of such assessments, a large population would
be required to come up with a statistically reliable measure, but the acquisi-
tion process is outside of the scope of the present work. In order to represent
assessments, we have used resemblance relations to model specialization dis-
tance (note that resemblance or similarity relations can be used also as general
semantic relationships that are not related with the subtype requirement, but
they’re not considered here). A resemblance relation R on a crisp domain D
is a binary fuzzy relation (7).

R : D ×D → [0 . . . 1] (7)

which satisfies reflexive (8) and symmetric (9) properties.

R(x, x) = 1 ∀x ∈ D (8)

R(x, y) = R(y, x) ∀x, y ∈ D (9)

Given this definition, a separate partial resemblance relation R can be ob-
tained (from micro-level assessments) locally for each partition of subclasses,
so that we operate on a set of relations (10) in the form (11).

ΠD =
⋃

x∈P

Rx (10)

Rx : p(d,c) ∪ {c} × p(d,c) ∪ {c} → [0 . . . 1] (11)

Relations are labelled partial since they only contain class-subclass rela-
tionships, that is, relations are really defined in the form Rx : {c} × p(d,c) →
[0 . . . 1], i.e. from a specified super-class to all its subclasses that are discrim-
inated by an specific d (although this can easily be extended to siblings: a
complete resemblance relation could be derived for each local partition by the
properties of the resemblance relation). This enables a form of stepwise sim-
ple reasoning in which concepts at hierarchy level i can be substituted with
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the closest concept in the i± 1 level traversing gen-spec relations through the
different discriminators.

The partial resemblance relations are obtained by directly taking the re-
semblance grades obtained experimentally from micro-level assessments with
a sample population knowledgeable in the domain (which requires the con-
version of human relative distance assessments – like ‘subclass B is rather
closer from superclass A than subclass C ’ – to numerical values in the unit
interval4 ). Once the local resemblance structured, subtree-level assessments
can be used to adjust resemblance values entire subtrees of the generalization
hierarchy, using only a discriminator for each superclass. This approach only
works for limited-size subtrees, since it’s necessary to set comparison between
all the elements in a set where at least one generalization link is included for
each of the partitions.

3 Extending Semantic Markup Languages for
Specialization Distance

We have specified an extension to Daml+Oil to encode resemblance relations
within Rdf files. The concept of discriminator was added to the language,
along with a way to encode local resemblance relations. The following example
Rdf fragment sketches the essentials of this extension, which uses a higher-
order statement [14] called withDiscriminator and withResemblance about
subClassOf statements.

<daml:Class rdf:ID="A">
<rdfs:subClassOf rdf:resource="#B">

<ext:withDiscriminator rdf:ID="d1"/>
<ext:withResemblance grade="0.8"/>

</rdfs:subClassOf>
</daml:Class>

<daml:Class rdf:ID="K">
<rdfs:subClassOf rdf:resource="#B">

<ext:withDiscriminator rdf:ID="#d1"/>
<ext:withResemblance grade="0.7"/>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#D">

<ext:withDiscriminator rdf:ID="#d2"/>
<ext:withResemblance grade="very low"/>

</rdfs:subClassOf>
</daml:Class>

4 We have not already mathematically formalized such a procedure, but it’d possi-
ble to do so.
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<ext:HarmonizedHierarchy rdf:ID="h1">
<ext:fromClass rdf:ID="#B">
<ext:discriminants>
<rdf:Bag>

<rdf:li resource="#d1"/>
<rdf:li resource="#d3"/>

</rdf:Bag>
</ext:discriminants>
<ext:HarmonizedHierarchy>

The example shows that either numeric values or labels in ordered label
sets (that could be defined as XML Schema dataypes [15]) could be used for
the resemblance values. Note also that harmonized hierarchies are explicitly
encoded by specifying the root class, and the set of discriminators that have
been assessed.

As a case study, a simple personalized recommender agent has been de-
veloped, that uses resemblance relations in the filtering process inside a Web
application about products. More specifically, the agent takes content items
from a database of existing ones for user U that has previously demonstrated
interest in a set of classifiers CU . The items are annotated by terms in the
agent’s internal ontology. The agent searches for items that match CU (and
that have not been previously visited by U), taking into account the extended
annotations by using resemblance to direct subclass or superclasses as a par-
tial match in the absence of full matches. Figure 1 shows an example of the
prototype, where the left frame shows changing links about Unspsc cate-
gories, ordered by relevance for the specific user (this is commonly referred
to as adaptive sorting in adaptive hypermedia research [3]), and taking into
account resemblance in filtering related items.

For example, if piano ∈ CU then the agent has two options to generate
recommendations from the gen-spec hierarchy:

• Going ‘up’ to the more abstract term Keyboard-instruments
• Or going ‘down’ to specializations of piano (like spinet, console or grand

pianos).

The agent would choose first the shorter distance (i.e. the larger resem-
blance). In the example, it would choose going ‘down’ (and sort the piano
subclasses by descending resemblance), since the way up represents a bigger
step, due to the highly abstract nature of the term Keyboard-instruments.

This behavior may prevent the agent to jump to excessively abstract cat-
egories (e.g. reaching the awkward Musical Instruments, - Recreational
Equipment, Supplies and Accessories class mentioned above).

Other resemblance-filtering schemes can be implemented and studied, and
existing ontologies can be easily annotated to support this approach, but we
have found that ontology-level overall relations are difficult to acquire from
users.
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Fig. 1. Overall layout of the Web prototype that uses resemblance relations to
navigate product categories.

4 Conclusions and Future Work

Current approaches to generalization in conceptual modelling and ontology
engineering lack the notion of distance between classes and subclasses. This
notion, in many cases, cannot be computed from the structural characteristics
of the ontology (or model) due, for example, to incompleteness or ill-defined
hierarchies.

We have described the notion of distance from a class to its subclasses, and
how it can be represented through partial local resemblance (fuzzy) relations,
and added to current Rdf-based ontology description languages. This distance
notion can be assessed and applied easily to filtering processes, but further
empirical user testing is needed to come up with a measure of its impact
from the user-interaction perspective. Our approach can be considered as
complementary to fuzzy subtyping schemes [4], in which uncertainty and/or
partial truth about types of objects is considered.

Further research should address additional properties of gen-spec hierar-
chies, for example, the relationship between discriminators at various levels of
the hierarchy, or the implications of the notion of distance in ‘sibling ’ classes
inside the ontology.
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