
Conceptualizing Measures of Required Software

Functionality

Concepción López
1
, Juan-José Cuadrado

2
 and Salvador Sánchez-Alonso

3

1 Engineering Department, Francisco de Vitoria University

Ctra. Pozuelo-Majadahonda Km. 1.8 (Madrid), Spain

c.l.rodriguez@ufv.es
2,3Information Engineering Research Unit

Computer Science Dept., University of Alcalá

Ctra. Barcelona km. 33.6 – 28871 Alcalá de Henares (Madrid), Spain

jjcg@uah.es, salvador.sanchez@uah.es

http://www.cc.uah.es/ie

Abstract. Software functionality expressed in user requirements is a key

element for the measurement and planning of the software process. As such, it

is important to have an upper model of existing function analysis models as

those provided in function point counting methods. This paper discusses an

ontological analysis of the concepts related to the specifications of

functionality, in the context of existing ontological work on Software

Engineering. Concepts from well-known function measurement methods are

mapped to existing formal definitions, and the main conceptual pitfalls and

fuzzy issues are analyzed.

Keywords: Software functionality, function points, ontologies

1 Introduction

The term function is defined in the IEEE Std 610.2 as “(1) A defined objective or

characteristic action of a system or component. For example, a system may have

inventory control as its primary function.”. This sense of function emphasizes the

dynamic aspects of software, and is complemented in the normative dimension by the

definition of functional requirement as “A requirement that specifies a function that a

system or system component must be able to perform”. To complement these

definitions, functionality is defined in the Merriam Webster’s online dictionary as

“the particular set of functions or capabilities associated with computer software or

hardware or an electronic device”. From these definitions it becomes clear that

functionality is a matter of behaviors.

However, when considering components, we must consider that the behavior carried

out by some of the components in non-trivial software systems are internal, in the

sense that they come from a process of design and are not directly specified as user

requirements. Typically, user-prescribed functionality is mapped in design time to

software components, which expose functionality to other components. Then,

required functionality can be defined as the functions at the level expressed in

functional requirements, emphasizing that we stay at the level of final user

functionality. Even in the case that functional requirements are expressed for a

software that has not a user interface (as a framework), the distinguishing

characteristics of required functionality in the sense provided here is that it was stated

as functional requirements in the context of engineering. That is, user

requirements are performative, in the sense that they trigger development activities.

As engineering artifacts, one can expect required functions to be measurable, and as a

matter of fact, there is a significant tradition in measuring required functions.

Function Point Analysis (FPA) is one the most widely used software functional size

measurement methods. Since 1984 this method is promoted by The International

Function Point Users Group or IFPUG1. This group did not produce a measurement

standard, but a set of standards and technical documents about functional size

measurement methods, known as the ISO/IEC 14143 series. Starting in 1998, a set of

experts in software measurement created the Common Software Measurement

International Consortium (COSMIC)2, and proposed an improved measurement

method known as Full Function Points. This method becomes the standard ISO/IEC

19761 in 2003 and is also ISO/IEC 14143 compliant.

Function measurement methods rely on some definition of what constitutes

software functionality, and obviously the outcomes of the measurement process is

dependant on the understanding of such concepts. This is also especially relevant for

converting or comparing measures that used a counting method with measures

obtained through other one (e.g. from IFPUG to COSMIC and viceversa). Thus, these

kinds of measures require a sound conceptual analysis which determines what the

things to be counted are. Such kind of analysis was the motivation for the inquiry

reported in this paper. Since existing research has dealt with ontologies of software

and software engineering (Calero, Ruiz and Piattini, 2006), the point of departure of

such an analysis was that of synthesizing and revising existing ontological definitions

of software and software function. This was accomplished by using the general

<onto-SWEBOK> framework as the underlying conceptual structure (Abran et al.,

2006). Further, the definitions provided are based on the IFPUG and COSMIC

methods for measuring functionality, since they are specific of a user’s view of

functionality, which is the object of interest here.

The ontological version of a coherent and comprehensive view of software

functionality allows for the reconciliation of measurement methods, and also for the

development of ontology-driven software configuration tools that depart from abstract

representations of functions, and not from source code. It should be noted that

Software Configuration and requirement tracing tools deal with functionality at the

level of documentation pieces, but do not use models of functionality.

The rest of this paper is structured as follows. Section 2 discusses the main

ontological issues of software functionality in connection with the <onto-SWEBOK>

ontology. Then, conceptual mismatches and some issues of fuzziness in the concepts

1 http://www.ifpug.org/
2 http://www.gelog.etsmtl.ca/cosmic-ffp/

described are addressed in Section 3. Finally, Section 4 provides conclusions and

outlook.

2 Main concepts and properties

2.1. Conceptualizing software

The view of software that needs to be addressed here is actually that of software

specification. There has been a considerable debate on the formal/informal form of

such specifications – a review of the main original issues can be found in (Colburn,

2000, pp. 129-). However, the discussion here concerns a given specification,

assuming it correctly captures the real world entities being modeled and the right user

needs. In addition, software has a dual nature concerning its form of expression and

its form of execution. But since here we deal only with the inputs and expected

outputs of software behavior (be it yet developed, functioning software or only

specifications), the discussion is not relevant.

From the viewpoint of the coming discussion, we will start from some definitions

on the OpenCyc3 ontology. OpenCyc is the open source version of Cyc (Lenat, 1995),

which contains over one hundred thousands atomic terms, and is provided with an

associated efficient inference engine. It attempts to provide a comprehensive ontology

of “commonsense” knowledge, including what are usually considered “upper

definitions”. Figure 1 provides a fragment of the OpenCyc ontology expressed in

UML. It depicts a selection of concepts in OpenCyc and their relations (predicates)

that are relevant to our present discussion.

3 http://www.opencyc.org/

SoftwareObject-Individual

SoftwareObject

ConceptualWork AIS

IBT

*
instantiationOfAIS*

ComputerCode

ComputerProgram-CW

programCode *

Specification

programSpecifications

ProgramSpecification

Figure 1. Software and specifications of software.

 The main idea in Figure 1 is that there is a class of objects that are

ProgramSpecifications that determine the expected behavior of

ComputerPrograms. The OpenCyc concept ProgramSpecification is defined as

“[…] not a computer program itself (i.e. lines of code), but an abstract

characterization of how a program should behave. For instance, a sorting program can

be specified by requiring that the program's output be a list of the same elements as

the input such that no element follows an element that is greater than it.”. Functional

specifications are obviously subsumed in that category. A problem arises with the

granularity of what a “program” is considered. ProgramSpecification instances

are no limited to “single, discrete programs”, thus, the mapping of computer programs

(as conceptual works) and specifications is actually conventional and it cover several

cases:

1. A specification covers a number of programs (e.g. in the case of a

protocol specification).

2. A specification covers a single program.

3. A specification is only part of a program functionality.

The OpenCyc concept ProgramStepSpecification serves to cover only a part

of a program to deal with case (3) that is not clearly covered in

ProgramSpecification.

There is also a relevant distinction that appears in Figure 1 between these computer

programs considered ConceptualWorks and the ComputerCode (be it source or

binary) that realizes them. In turn, computer code is actually an abstract information

structure (AIS) that has as instantiations information bearing things (IBT) as

computer file copies containing the computer code. For example, some given software

like the statistical package StatGraphics 74 can be modeled as an instance of

ComputerProgram-CW. Then, each of the distributions for different platforms can be

specified by the following: “the code in which an instance of ComputerProgram-CW

is expressed constitutes an instance of AbstractInformationStructure that can

be related to the program it expresses using the predicate programCode.”.

In summary, ComputerCode instances are realizations of ComputerProgram-CW,

but we are concerned with the specifications of the latter, which in turn are instances

of ProgramSpecification.

2.2. Static and dynamic aspects

The following Table summarizes a selection of the main definitions in IFPUG and

COSMIC as inputs for the measurement process.

Data-related elements

COSMIC:OOI (object of interest) any physical thing, as well as any conceptual

objects or parts of conceptual objects in the world of

the user, about which the software is required to

process and/or store data

COSMIC:DataGroup a distinct, non empty, non ordered and non

redundant set of data attribute types where each

included data attribute type describes a

complementary aspect of the same object of interest

COSMIC:DataAttribute the smallest piece of information, within an

identified data group type, carrying a meaning from

the perspective of the software’s functional user

requirements

IFPUG:Entity a fundamental thing of relevance to the user, about

which a collection of facts is kept.

IFPUG:RecordElement a subgroup of data elements within an internal

logical file or an external interface file

IFPUG:File a logically related group of data, not the physical

implementation of those groups of data.

IFPUG:DataElement a unique user recognizable, non-repeated field.

Process-related elements
COSMIC:FunctionalProcess an elementary component of a set of functional user

requirements comprising a unique cohesive and

independently executable set of data movement

type; a functional process is complete when it has

executed all that is required to be done in response

to the triggering event.

IFPUG:TransactionalFunction the functionality provided to the user to process data

by an application. Transactional functions are

defined as external inputs, external outputs, and

external inquiries.

4 Here we consider concrete versions and not software series.

A straightforward mapping of COSMIC and IFPUG concepts are discussed in what

follows, with an analysis of their ontological status.

First of all, entities COSMIC:OOI and IFPUG:Entity refer to anything that is of

interest to users, which encompasses a broad category of things. OpenCyc Thing

concept encompasses every possible individual entity.

However, the interest in functional specifications is then going to the specific

representations of objects of interest. The OpenCyc ConceptualAbstraction

concept (defined as “general concepts formed by extracting common features from

specific examples”) captures the main requirements of both COSMIC:DataGroup and

IFPUG:File, even though it does not mandate persistence as a characteristic.

Further, its specialization AttributeCharacteristicOfAnEntity defined as

“abstractions belonging to or characteristics of an entity” subsumes the definitions of

COSMIC:DataAttribute and IFPUG:DataElement. Two additional characteristics

of data concepts in IFPUG and COSMIC require additional definition: (1) the fact that

data elements/attributes are “unique” or “atomic”, and (2) the definition in IFPUG of

record elements as parts of files. Both require a definition of a sub-abstraction part-of

predicate relating parts of the conceptual abstractions.

The dynamic or process related part is considered only in terms of the data

elements that are used, communicated and changed. Both methods provide room for

expressing the complexity of the computation, but this is kept separate from the other

considerations in the method. Then, the important elements in the ontology are

Specifications of the input and output parameters, along with the specifications of the

data that is consulted and/or modified/created. All of these can be represented through

the same conceptual abstraction concepts defined above. The processes in themselves

(better, the description of the processes) can also be represented through conceptual

abstractions. For preserving their differentiated ontological status, separate concepts

for processes and data abstractions can be defined. This will be dealt with later in this

paper, but an initial diagram with the main classes is provided in the next Figure.

3 Analyzing conceptual mismatches and fuzzy aspects

Table 2 summarizes the main mappings and the concepts that can be used to underlie

them.

Concept IFPUG

concept

COSMIC

concept

Shared

meaning

Potential fuzziness

DataAbstraction File DataGroup Facets of the

facts abstracted

from an object

of interest.

What is considered an

OOI is conventional in

relation with an

abstraction paradigm.
DataCharacteristic DataElement DataAttribute Components of

a higher data

level

abstraction.

In both cases, the

consideration of

primitiveness is

conventional.
FunctionAbstractio

n

Transaction

alFunction

FunctionalPro

cess
Movement of

data.

Kinds and granularity

of functional

abstractions.

Consideration of

processing complexity.

Regarding functional abstractions, the abstractions are characterized by data groups

involved – Exit, Entry, Read and Write in COSMIC and EI, EO, EQ in the case of

IFPUG. This characterizes adequately the functional specification, but only in the

case of IFPUG the complexity of the internal processing is used as a weighting in the

counting. In both cases, it is important to question that the processing is important in

terms of specification, i.e. different processing (that are obviously different in

ontological terms) could be expressed in terms of similar data elements moved. One

possibility to introduce that propositional information inside the ontology without

introducing purely implementation concerns could be that of specifying the functions

in terms of pre- and post-conditions on the data moved, as used in techniques as

design by contract (Meyer, 1997). Even though that approach does not directly

translate into a counting mechanism, it defines function concisely and allows for the

identification of data moved. In other direction, the granularity of functions is a

concern from an ontological viewpoint. The definitions of common method have a

fuzzy point in their reference to the object of interest. For example, in COSMIC, data

group types are “distinct, non empty, non ordered and non redundant set of data

attribute types where each included data attribute type describes a complementary

aspect of the same object of interest”. This allows an easy recognition of classes or

records as data groups, but leave some uncertainty on which is the criteria for a data

group being primitive. This is a major ontological issue which can only be solved by

building on an ontology of primitive data types (but not in the sense of conventional

programming languages). For example, the consideration that a date or a vCard is an

attribute or a data group with attributes inside is conventional, and its primitiveness

should be either made explicit or inferred.

In other direction, the kinds of functional abstractions require also further inquiry.

The key ontological issue is that different terms are required for each type of

functional component that entail some difference in engineering terms. For example,

the difference between an Input and a Save in COSMIC is clearly relevant. However,

there is also a relevant engineering distinction in updating a data attribute of an entity

or updating the relationship between two entities. This in turn is reflected in some

paradigms on operations of different complexity (e.g. in OODBMS updating a link is

different from updating a data attribute) and it could even affect what is considered a

distinct data abstraction, i.e. is the relationship between two entities a distinct OOI or

not? This links with the ontological aspects of data abstractions. The ontological

representation requires the explicit modelling of the paradigmatic information

modelling constructs we use, e.g. object-oriented, logics-based, relational. This is

compatible with current ontological languages since it can represent different

incompatible but internally consistent paradigms. This is in practice implemented in

existing tools that compute semi-automatically function points from UML diagrams.

In addition to the key ontological elements pointed out, there are other differences

between COSMIC and IFPUG, as those described by Xunmei, Guoxin and Hong

(2006), but they affect scope and the introduction of non functional aspects, which are

not a concern in our present discussion.

4 Conclusions and outlook

Software functionality as something that is reified in the form of specifications is an

integral part of any software engineering endeavor. As such, the measurement of

functionality requires a deep understanding of the object measured. This paper has

reported an analysis of such conceptual structure, pointing out to the issues that are

the source of potential conceptual mismatches.

From the conceptual structure described here, it becomes apparent that it is

reasonable to initiate and inquiry on the possibility of bridging or transforming

different function measurement methods, since they are all based in a similar core of

concepts.

References

1. Abran, A., Cuadrado-Gallego, J.J., García-Barriocanal, E., Mendes, O., Sánchez-

Alonso, S. and Sicilia, M.A. (2006). Engineering the ontology for the Swebok: Issues

and techniques. In Calero, C., Ruiz, F. and Piattini, M. (Eds.), Ontologies for

software engineering and software technology (pp. 103-122). New York: Springer.

2. Calero, C., Ruiz, F. and Piattini, M. (Eds.), Ontologies for software engineering and

software technology. New York: Springer.

3. Colburn, T. (2000). Philosophy and Computer Science. M.E. Sharpe, Armonk, NY.

4. Lenat, D. B. Cyc: A Large-Scale Investment in Knowledge Infrastructure.

Communications of the ACM 38(11): 33—38 (1995).

5. Meyer, B. (1997) Object Oriented Software Construction, Prentice Hall, 1997, pp.

331-410.

6. Xunmei, G., Guoxin, A. and Hong, Z. (2006) The Comparison between FPA and

COSMIC-FFP. In Proceedings of the Software Engineering Measurement Forum

2006

.

