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Abstract 
 
When machine-understandability is required to build 
software modules that automatically retrieve and 
combine learning objects, learning object relationships 
should be carefully considered, as they raise important 
semantic issues that influence runtime behaviour. In 
this paper, we analyse how learning object 
relationships have an effect on learning object 
contracts and look for analogies with the object-
oriented paradigm. Being some of the most common 
relationships, we focus on the commitments that 
aggregation and generalization impose on learning 
object contracts.  
 
1. Introduction 
 

Current learning object metadata specifications 
support several kinds of relationships between learning 
resources. Indeed, LOM [4] includes a Relation cate-
gory that groups features to specify the relationship 
between the learning object being described and other 
related learning objects. Furthermore, Dublin Core 
Metadata [2] also contains a Relation element as a 
means of specifying references to related resources.  

Currently, both LOM and Dublin Core are not 
completely unambiguous regarding relationships; e.g. 
Farance [3] includes relation in a list of LOM elements 
whose definitions are imprecise and thus problematic, 
while the IMS best practices [5] explicitly state about 
the Dublin Core Relation label: “[...] it is currently 
under development. Users and developers should 
understand that use of this element is currently 
considered to be experimental”. This vagueness is 
mainly due to the fact that there doesn’t exist a shared 
consensus on the kind of relations that can be 
established between learning objects. Nevertheless, in 

order to attain consistent LMS behaviour, a clear 
determination of the runtime implications of the 
diverse kinds of relationships is critical. 

From the origins of learning object technology, 
parallelisms have been established with the object-
oriented paradigm (OOP) [10]. Some elements in LOM 
and Dublin Core bear some resemblance to the basic 
relationships in OOP, although a shared analogy has 
not been explicitly established yet.  

In this paper we discuss the nature of learning object 
relationships, establishing analogies with relationships 
in the OOP. In section 2, information on relations 
provided by current metadata specifications is 
reviewed. In section 3, we reason about semantic 
relationships by comparing the LOM information on 
relations to structural relationships in the OOP. Then, 
in sections 4 and 5 we examine generalization and 
aggregation and the commitments they entail when 
applied to learning objects. Finally, conclusions are 
outlined in section 6. 
 
2. Current metadata information on 
relations revisited 
 

Metadata specifications, like Dublin Core and LOM, 
see learning objects relations primarily on a syntactical 
level, and consequently they do not specify semantic 
constraints regarding the description of concrete types 
of relationship. It is not precisely specified whether 
metadata information has to be added at both ends of 
the relationship. At the same time, it has not been 
clearly determined what a learning object can be linked 
to (other learning objects, descriptions of external re-
sources, books, etc.). The following metadata record 
from a NETg learning object –provided by IMS as a 
metadata example– illustrates this case, since it links 
the learning object to external resources not properly 



identified from the point of view of automation:  
 

7.1:Relation.kind = isPartOf 
7.2:Relation.Resource.Description = “NETg Course 72475: 

Microsoft SQL Server 7.0…” 
... 
7.1:Relation.kind = isBasedOn 
7.2:Relation.Resource.Description = “MS Education and 

Certification Student Workbook… Page 127” 
... 
 
The Dublin Core (DC) metadata set includes a 

Relation element for referencing a related resource, 
and a number of refinement terms each providing 
support for a specific kind of relation: hasVersion, 
replaces, requires, hasPart, references, hasFormat and 
their symmetrical isVersionOf, isReplacedBy, 
isRequiredBy, isPartOf, isReferencedBy and 
isFormatOf. Moreover, there is a Source element that 
could be used for subtyping. Excluding symmetrical 
terms, DC terms supporting relations fall into two 
categories: referential and semantic. Referential terms 
support metadata information that is mostly 
syntactical. This category includes hasVersion 
(whether the described resource object has a version, 
edition, or adaptation), replaces (the described 
resource supplants, displaces or supersedes the 
referenced resource), references (the described 
resource references, cites, or otherwise points to the 
referenced resource) and hasFormat (the referenced 
resource is essentially the same intellectual content 
presented in another format). As this kind of 
information is not related to the learning object 
content, we will not deal with it here. Semantic terms 
refer to information that could be used in automated 
content selection and delivery. DC refinement terms in 
this category are requires (the described resource needs 
the referenced resource to support its function, delivery 
or coherence of content) and hasPart (the referenced 
resource is included in the described resource either 
physically or logically). The term Source (work from 
which the resource was derived) also belongs to this 
category, even though the forms and implications of 
derivation are unclear. 

Regarding relations, LOM includes all the DC terms 
plus a few additional elements, grouped in a specific 
category (7:Relation) whose aim is grouping features 
that define the relationship between the learning object 
and other related learning objects. In subcategory 
7.1:Relation.kind, the LOM lists the value space for 
relations, which is basically a mapping of the already 
mentioned DC refinement terms plus isBasedOn 
(together with its complement isBasisFor) that maps to 
the DC Source term. Unfortunately, this is not the only 
category in LOM where information on relations can 
be included: 1.7:Structure, 1.8:Aggregation.level and 

5.2:LearningResourceType can also be considered as 
implicit relationships. 

Summing up: in general terms, current metadata 
information on relations lacks both structure and a 
clear definition. Moreover, in LOM this information is 
scattered over several categories, which makes its use 
unclear. It can be concluded that a) metadata 
information on relationships is not unambiguously 
specified and b) the discussed specifications do not 
seem to be ready for extensive use. This situation may 
mislead learning object designers and users, and it 
might be one of the reasons why, in many cases, this 
kind of element is not included in metadata records.  
 
3. Semantic learning object relationships 
 

Relating a learning object to another has semantic 
implications (understood as runtime commitments for 
the system using or delivering the objects), because 
some relations affect objects and create dependencies 
between them. As stated in [1], learning resources 
should be more accurately described by structural 
relationships in order to a) achieve better results when 
searching and b) to allow better queries. We will 
examine whether LOM can be used to successfully 
adapt structural relationships in the OOP to learning 
objects specificities.  

In previous works [7][9], we have referred to 
preconditions as the constraints under which a learning 
object can be delivered and used, and postconditions as 
the object expected learning outcomes, thus introducing 
the concept of contract as a set of pre- and post- 
conditions for a given learning object. This notion of 
contract will be used to support formal metadata 
specifications. 

Four major relationships exist in OOP –as defined in 
the UML– and all of them entail meaningful semantic 
responsibilities in the elements involved:  

 
- Association and aggregation describe semantic 

connections between objects. 
- Dependency relates two objects, the changes in 

one of which affect the other.   
- Generalization relates a more general class and 

a more specific one. 
 
It can be noticed that not all these relationships are 

defined at the same level: while some describe links 
between instances, others show connections between 
classes, and thus can be classified into instance-level 
(association, aggregation and dependency) and class-
level relationships (generalization).  

OOP relationships can be mapped to LOM by using 
the 7.1:Relation.kind, as described in Table 1. 



Table 1. OOP Relationships as LOM elements 
 

OOP Relationship LOM element 
Association requires 

Generalization isBasedOn 
Aggregation hasPart 
Dependency references 

 
However, generalization can also be mapped to the 

LOM 5.2:LearningResourceType. Utilizing isBasedOn 
suggests the possibility of an indeterminate number of 
user-defined available learning object types. On the 
other hand, using 5.2:LearningResourceType suggests 
that a limited list of universally acknowledged learning 
object types exist, whose structure is known. 

Relationships bring in runtime commitments that 
will affect the whole type (class-level relationships) or 
just the individual objects that participate in the rela-
tionship (instance-level relationships). From a learning 
object point of view, the most important commitment 
is availability, present in almost every relationship. 
Availability means that the referenced resource must 
be available whenever the current learning object is 
used or delivered. If a learning object –say A– that is 
being delivered to a learner includes a reference to 
another object –say B–, availability of B can be proved 
in two different forms: a) the referenced object must be 
effectively available, or b) the learner must provide 
evidence of a level of knowledge greater than or equal 
to that stated in the learning outcomes published in the 
contract of A [9]. Other runtime commitments are: 

 
- Propagation: some properties propagate from the 

aggregate to the parts. 
- Acyclicness: chains of relationships are not allowed 

to form cycles.  
- Contract inheritance: subtypes inherit the contract 

defined for a type.  
- Reference validity: the weakest form of availability, 

understood as a way of validating the existence of 
the referenced resource.  

 
Table 2 shows an inclusive set of commitments for 

learning object relationships. 
 

Table 2. Relationship commitments 
 

Relationship Commitments 
Association Availability 

Aggregation 
Propagation 
Availability 
Acyclicness 

Generalization Availability  
Contract inheritance 

Dependency Reference validity 

 
In what follows, the discussion is intentionally 

focused on the most common ones: generalization and 
aggregation. 

 
4. Generalization: discussing about the 
concept of learning object type 
 

In the OOP, every object is an instance of a class –a 
declarative element that describes the behaviour and 
structure of a set of objects–. As objects have their own 
entity and values, and are identifiable during execution, 
the descriptions of all the objects in a system must be 
available in order to know about their behaviour and 
structure.  

Although learning objects are assumed to be 
instances, LOM incorporates the concept of type as the 
value set in 5.2:LearningResourceType (simulation, 
exercise, diagram, etc.). As this list can be extended, 
one can presume that there is no limit to the number of 
types, but given the current approach the structure and 
implications of the existing types is unclear.  

To belong to a certain learning object type should 
entail a number of commitments. For example, let’s 
suppose that the LOM 5.2 entry value is diagram in a 
given metadata record; in this case the learning object 
will be probably required to include information on the 
formal language of representation –UML for instance, 
or none if it is a free notation diagram–. On the other 
hand, if the value is questionnaire, information on the 
number of questions is expected, and this time any 
reference to the formal language of representation will 
be probably considered an error. This example shows 
how, despite the fact that LOM does not provide 
information on the structure of the types it supports, 
details about the structure of the types are needed. The 
problem is that it is not possible to select a subset of 
specific metadata elements depending on the learning 
object type. 

However, a different solution could have been 
chosen: introducing the concept of learning object type 
as an object whose content is not directly usable but a 
description of other objects (a class). As in OOP, type 
descriptions would be used whenever an object of the 
class is delivered or used. This new approach suggests 
expressing learning object types in their metadata 
record, for instance, by adding the value NULL to the 
5.2:LearningResourceType vocabularies. This would 
allow us to represent a Diagram type as follows:  

 
5.2:LearningResourceType = NULL 
5.2.1:LearningResourceTypeName = Diagram 
5.2.1.1.TypeDependantCategory = 5.2.2 
5.2.1.2.TypeDependantElementName = RepresentationLanguage 
5.2.1.3.EntryType = CharacterString 



 
Category 5.2.2 is not actually part of LOM, and it is 

automatically generated to accommodate the new type 
dependant elements. According to this model, a 
Diagram instance could be described as: 

 
5.2: LearningResourceType = Diagram 
5.2.2: RepresentationLanguage = UML 
 
Adopting this model implies, on the one hand, 

modifying LOM to allow type descriptions based on 
including type dependant metadata elements for those 
resources whose 5.2:LearningResourceType is NULL; 
and on the other hand, extending the formal notation 
given in [9] to support the new approach. With regard 
to learning object contracts, generalization is not easy 
to represent since learning object design by contract is 
defined at instance level. It seems obvious that at least 
contract inheritance should be assured, which means 
that all the pre- and post- conditions of the parent apply 
to the subtype. The following assertions could be part 
of the contract of a questionnaire subtype: 

 
rlo <http://... /VideoBasedQuestionnaire> 
  require 
    mandatory <http://... /Questionnaire> 
    mandatory sys.requiresVideoFormat ≠ NULL 
    ... 
  ensure 
    <http://... /Questionnaire> 
    ... 
 
In this example, contract inheritance is guaranteed 

by adding the parent type contract to the current type 
list of postconditions. Major shortcomings of this 
approach are the lack of support by current metadata 
standards, the inexistence of a common language for 
type description and the need for a means of making 
accessible the available classes. However, such defi-
nitions would enable more specialized metadata 
schemas to be defined. 

 
5. Aggregation 
 

Most learning objects are compositions of others: 
this nature is on the basis of reusable learning 
resources. LOM category 1.8:AggregationLevel identi-
fies four levels of aggregation, numbered from 1 (raw 
media data or fragments) to 4 (a set of courses that lead 
to a certificate). A level n object can contain a number 
of level n-1 objects or can recursively contain objects 
of level n. Likewise, category 1.7:Structure classifies 
the different types of aggregation from their internal 
structure: collection, linear, hierarchical or networked. 
However, being merely a way of classifying objects by 
their granularity, LOM information in categories 1.7 

and 1.8 does not enforce any dependency on the aggre-
gate or its constituent parts. In contrast, aggregation 
should be seen as a semantic relationship, which 
implies two major constraints: properties propagate 
from aggregate to parts (and vice versa), and no cycles 
of aggregation links are permitted. 

The contract of a learning object that is an aggregate 
of others is often affected by the contracts of its parts. 
Consider a LOM-conformant level 3 learning object 
(course) in Spanish: as the course is a composition of 
lower-level objects, their language will have to be 
Spanish as well. So, whenever the elements comprising 
an object are other learning objects, their contracts will 
need to be conformant to what the aggregate contact 
states: this is semantic aggregation. When representing 
semantic aggregation in metadata records, a number of 
data items depend on information in other objects, as 
stated in Table 4.  

 
Table 4. Aggregation constraints 

 
LOM Category Constraint 

1.3:Language 
5.1:InteractivityType 
5.7:TypicalAgeRange 
6.1:Cost 
6.2:Copyright&Restrictions 

The desired value for the 
aggregate restricts the value of the 
parts to be chosen 

1.7:Structure 
1.8:AggregationLevel 
5.3:InteractivityLevel 
5.4:SemanticDensity 
5.8:Difficulty 

The value (level) in the aggregate 
must be greater or equal than the 
value of its parts 

2.2:Status Completion on the aggregate 
enforces completion on every part 

4.1:Format Aggregate incorporates all the 
formats in its parts 

4.2:Size 
4.7:Duration 
5.9:TypicalLearningTime 

Aggregate values calculate from 
the sum of the values of its parts 

4.3:Location Location of the parts has to be 
publicly accessible 

4.4:Requirement  
4.6:OtherPlatformRequirements

Aggregate value is made up of all 
the requirements in its parts 

 
When a learning object is part of a higher-level 

object, it is important to consider whether this should 
be set in its metadata record or not. Reusability asks for 
the components of an aggregation to be built without any 
knowledge about it, in order to facilitate its future reuse, 
so it must be the aggregate responsibility to compose all 
the parts and to keep track of them. Also, learning object 
authors (or automated systems) have to carefully pick 
out the parts constituting an aggregate, since its 
contract will impose conditions to be satisfied by the 
parts before they can work together. In the following 
example, a learning object MyLO that displays a Flash-
animated example of the Quicksort algorithm, is under 
consideration by a composer agent [8] in order to 
integrate it into a Java course object: 



 
rlo <http://... /MyLO> 
 require 
   mandatory   lrn.language = es 
   mandatory   sys.browser >= V5_browser 
   mandatory   sys.requirement = FlashPlugIn 
   mandatory   ctx.cost = true  
   reco
 ensure 

mmended ctx.time = 0.5h     

 lrn.knows(qSort)[90] 
 
Due to propagation, the aggregate learning time will 

remain unknown until the total number of pieces are 
assembled since it is calculated from them. Availability 
asks for MyLO to be publicly accessible whenever the 
aggregate is being delivered or used, but also for its 
usage fee to be paid. As MyLO is not composed of 
other learning objects (it is a leaf in the aggregation 
tree), acyclicness is guaranteed given that all the 
potential cycles would end here. The aggregate 
contract could be something like: 

 
rlo <http://... /AgentGeneratedAggregate> 
  require 
    mandatory   lrn.language = es 
    mandatory   sys.browser > V5_browser 
    recommended ctx.time = 10h 
    mandatory   ctx.cost = true 
    mandatory   ctx.hasPart = "MyLO” 
    ... 
  ensure 
    lrn.knows(qSort) [90] 
    ... 
 
As the example shows, MyLO design is not 

constrained by pre- or post- conditions in the aggre-
gates it would be part of. It is the responsibility of the 
author of the aggregate to check the consistency of the 
parts with the aggregate contract and use some features 
to calculate the final values of some assertions (as 
learning time in our example). Also, some pre-
conditions in the aggregate contract may be required to 
be stronger than those of its parts. For example, 
browser requirements for the above aggregate are 
stricter than the ones in MyLO, possibly due to the 
existence of other parts with stronger requirements. 
The new precondition hasPart appears after choosing 
MyLO and as a consequence of the relationship. 

We suggest stating information on relationships only 
in the aggregates by using LOM item hasPart (and not 
in the parts, thus avoiding the use of isPartOf). This 
will allow to include information on semantic aggrega-
tions, as it forces systems to check the related 
resources to a given one. This solution is consistent 
with Dublin Core and ensures compatibility with it.  

 
6. Conclusions 
 

As it is currently defined, information on relations is 

inessential because it leans on an imprecise notion of 
learning object relationship. Generalization and aggre-
gation, the most common relationships in the OOP, 
have been used as the material for a discussion on 
LOM representation of meaningful relationships. 
Learning object design by contract is a means of 
formalizing metadata records that helps us to represent 
the runtime commitments that these relationships bring 
in when taken into the learning objects arena.  

Future work should detail the implications of 
learning object relationships so that full consistency in 
LMS behaviour could be achieved. 
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