
On the Semantics of Aggregation and Generalization in Learning Object
Contracts

Salvador Sánchez

Faculty of Computing
Pontifical University of Salamanca - Spain

salvador.sanchez@upsam.net

Miguel-Angel Sicilia
Computer Science Department

University of Alcalá - Spain
msicilia@uah.es

Abstract

When machine-understandability is required to build
software modules that automatically retrieve and
combine learning objects, learning object relationships
should be carefully considered, as they raise important
semantic issues that influence runtime behaviour. In
this paper, we analyse how learning object
relationships have an effect on learning object
contracts and look for analogies with the object-
oriented paradigm. Being some of the most common
relationships, we focus on the commitments that
aggregation and generalization impose on learning
object contracts.

1. Introduction

Current learning object metadata specifications
support several kinds of relationships between learning
resources. Indeed, LOM [4] includes a Relation cate-
gory that groups features to specify the relationship
between the learning object being described and other
related learning objects. Furthermore, Dublin Core
Metadata [2] also contains a Relation element as a
means of specifying references to related resources.

Currently, both LOM and Dublin Core are not
completely unambiguous regarding relationships; e.g.
Farance [3] includes relation in a list of LOM elements
whose definitions are imprecise and thus problematic,
while the IMS best practices [5] explicitly state about
the Dublin Core Relation label: “[...] it is currently
under development. Users and developers should
understand that use of this element is currently
considered to be experimental”. This vagueness is
mainly due to the fact that there doesn’t exist a shared
consensus on the kind of relations that can be
established between learning objects. Nevertheless, in

order to attain consistent LMS behaviour, a clear
determination of the runtime implications of the
diverse kinds of relationships is critical.

From the origins of learning object technology,
parallelisms have been established with the object-
oriented paradigm (OOP) [10]. Some elements in LOM
and Dublin Core bear some resemblance to the basic
relationships in OOP, although a shared analogy has
not been explicitly established yet.

In this paper we discuss the nature of learning object
relationships, establishing analogies with relationships
in the OOP. In section 2, information on relations
provided by current metadata specifications is
reviewed. In section 3, we reason about semantic
relationships by comparing the LOM information on
relations to structural relationships in the OOP. Then,
in sections 4 and 5 we examine generalization and
aggregation and the commitments they entail when
applied to learning objects. Finally, conclusions are
outlined in section 6.

2. Current metadata information on
relations revisited

Metadata specifications, like Dublin Core and LOM,
see learning objects relations primarily on a syntactical
level, and consequently they do not specify semantic
constraints regarding the description of concrete types
of relationship. It is not precisely specified whether
metadata information has to be added at both ends of
the relationship. At the same time, it has not been
clearly determined what a learning object can be linked
to (other learning objects, descriptions of external re-
sources, books, etc.). The following metadata record
from a NETg learning object –provided by IMS as a
metadata example– illustrates this case, since it links
the learning object to external resources not properly

identified from the point of view of automation:

7.1:Relation.kind = isPartOf
7.2:Relation.Resource.Description = “NETg Course 72475:

Microsoft SQL Server 7.0…”
...
7.1:Relation.kind = isBasedOn
7.2:Relation.Resource.Description = “MS Education and

Certification Student Workbook… Page 127”
...

The Dublin Core (DC) metadata set includes a

Relation element for referencing a related resource,
and a number of refinement terms each providing
support for a specific kind of relation: hasVersion,
replaces, requires, hasPart, references, hasFormat and
their symmetrical isVersionOf, isReplacedBy,
isRequiredBy, isPartOf, isReferencedBy and
isFormatOf. Moreover, there is a Source element that
could be used for subtyping. Excluding symmetrical
terms, DC terms supporting relations fall into two
categories: referential and semantic. Referential terms
support metadata information that is mostly
syntactical. This category includes hasVersion
(whether the described resource object has a version,
edition, or adaptation), replaces (the described
resource supplants, displaces or supersedes the
referenced resource), references (the described
resource references, cites, or otherwise points to the
referenced resource) and hasFormat (the referenced
resource is essentially the same intellectual content
presented in another format). As this kind of
information is not related to the learning object
content, we will not deal with it here. Semantic terms
refer to information that could be used in automated
content selection and delivery. DC refinement terms in
this category are requires (the described resource needs
the referenced resource to support its function, delivery
or coherence of content) and hasPart (the referenced
resource is included in the described resource either
physically or logically). The term Source (work from
which the resource was derived) also belongs to this
category, even though the forms and implications of
derivation are unclear.

Regarding relations, LOM includes all the DC terms
plus a few additional elements, grouped in a specific
category (7:Relation) whose aim is grouping features
that define the relationship between the learning object
and other related learning objects. In subcategory
7.1:Relation.kind, the LOM lists the value space for
relations, which is basically a mapping of the already
mentioned DC refinement terms plus isBasedOn
(together with its complement isBasisFor) that maps to
the DC Source term. Unfortunately, this is not the only
category in LOM where information on relations can
be included: 1.7:Structure, 1.8:Aggregation.level and

5.2:LearningResourceType can also be considered as
implicit relationships.

Summing up: in general terms, current metadata
information on relations lacks both structure and a
clear definition. Moreover, in LOM this information is
scattered over several categories, which makes its use
unclear. It can be concluded that a) metadata
information on relationships is not unambiguously
specified and b) the discussed specifications do not
seem to be ready for extensive use. This situation may
mislead learning object designers and users, and it
might be one of the reasons why, in many cases, this
kind of element is not included in metadata records.

3. Semantic learning object relationships

Relating a learning object to another has semantic
implications (understood as runtime commitments for
the system using or delivering the objects), because
some relations affect objects and create dependencies
between them. As stated in [1], learning resources
should be more accurately described by structural
relationships in order to a) achieve better results when
searching and b) to allow better queries. We will
examine whether LOM can be used to successfully
adapt structural relationships in the OOP to learning
objects specificities.

In previous works [7][9], we have referred to
preconditions as the constraints under which a learning
object can be delivered and used, and postconditions as
the object expected learning outcomes, thus introducing
the concept of contract as a set of pre- and post-
conditions for a given learning object. This notion of
contract will be used to support formal metadata
specifications.

Four major relationships exist in OOP –as defined in
the UML– and all of them entail meaningful semantic
responsibilities in the elements involved:

- Association and aggregation describe semantic

connections between objects.
- Dependency relates two objects, the changes in

one of which affect the other.
- Generalization relates a more general class and

a more specific one.

It can be noticed that not all these relationships are

defined at the same level: while some describe links
between instances, others show connections between
classes, and thus can be classified into instance-level
(association, aggregation and dependency) and class-
level relationships (generalization).

OOP relationships can be mapped to LOM by using
the 7.1:Relation.kind, as described in Table 1.

Table 1. OOP Relationships as LOM elements

OOP Relationship LOM element
Association requires

Generalization isBasedOn
Aggregation hasPart
Dependency references

However, generalization can also be mapped to the

LOM 5.2:LearningResourceType. Utilizing isBasedOn
suggests the possibility of an indeterminate number of
user-defined available learning object types. On the
other hand, using 5.2:LearningResourceType suggests
that a limited list of universally acknowledged learning
object types exist, whose structure is known.

Relationships bring in runtime commitments that
will affect the whole type (class-level relationships) or
just the individual objects that participate in the rela-
tionship (instance-level relationships). From a learning
object point of view, the most important commitment
is availability, present in almost every relationship.
Availability means that the referenced resource must
be available whenever the current learning object is
used or delivered. If a learning object –say A– that is
being delivered to a learner includes a reference to
another object –say B–, availability of B can be proved
in two different forms: a) the referenced object must be
effectively available, or b) the learner must provide
evidence of a level of knowledge greater than or equal
to that stated in the learning outcomes published in the
contract of A [9]. Other runtime commitments are:

- Propagation: some properties propagate from the

aggregate to the parts.
- Acyclicness: chains of relationships are not allowed

to form cycles.
- Contract inheritance: subtypes inherit the contract

defined for a type.
- Reference validity: the weakest form of availability,

understood as a way of validating the existence of
the referenced resource.

Table 2 shows an inclusive set of commitments for

learning object relationships.

Table 2. Relationship commitments

Relationship Commitments
Association Availability

Aggregation
Propagation
Availability
Acyclicness

Generalization Availability
Contract inheritance

Dependency Reference validity

In what follows, the discussion is intentionally

focused on the most common ones: generalization and
aggregation.

4. Generalization: discussing about the
concept of learning object type

In the OOP, every object is an instance of a class –a
declarative element that describes the behaviour and
structure of a set of objects–. As objects have their own
entity and values, and are identifiable during execution,
the descriptions of all the objects in a system must be
available in order to know about their behaviour and
structure.

Although learning objects are assumed to be
instances, LOM incorporates the concept of type as the
value set in 5.2:LearningResourceType (simulation,
exercise, diagram, etc.). As this list can be extended,
one can presume that there is no limit to the number of
types, but given the current approach the structure and
implications of the existing types is unclear.

To belong to a certain learning object type should
entail a number of commitments. For example, let’s
suppose that the LOM 5.2 entry value is diagram in a
given metadata record; in this case the learning object
will be probably required to include information on the
formal language of representation –UML for instance,
or none if it is a free notation diagram–. On the other
hand, if the value is questionnaire, information on the
number of questions is expected, and this time any
reference to the formal language of representation will
be probably considered an error. This example shows
how, despite the fact that LOM does not provide
information on the structure of the types it supports,
details about the structure of the types are needed. The
problem is that it is not possible to select a subset of
specific metadata elements depending on the learning
object type.

However, a different solution could have been
chosen: introducing the concept of learning object type
as an object whose content is not directly usable but a
description of other objects (a class). As in OOP, type
descriptions would be used whenever an object of the
class is delivered or used. This new approach suggests
expressing learning object types in their metadata
record, for instance, by adding the value NULL to the
5.2:LearningResourceType vocabularies. This would
allow us to represent a Diagram type as follows:

5.2:LearningResourceType = NULL
5.2.1:LearningResourceTypeName = Diagram
5.2.1.1.TypeDependantCategory = 5.2.2
5.2.1.2.TypeDependantElementName = RepresentationLanguage
5.2.1.3.EntryType = CharacterString

Category 5.2.2 is not actually part of LOM, and it is

automatically generated to accommodate the new type
dependant elements. According to this model, a
Diagram instance could be described as:

5.2: LearningResourceType = Diagram
5.2.2: RepresentationLanguage = UML

Adopting this model implies, on the one hand,

modifying LOM to allow type descriptions based on
including type dependant metadata elements for those
resources whose 5.2:LearningResourceType is NULL;
and on the other hand, extending the formal notation
given in [9] to support the new approach. With regard
to learning object contracts, generalization is not easy
to represent since learning object design by contract is
defined at instance level. It seems obvious that at least
contract inheritance should be assured, which means
that all the pre- and post- conditions of the parent apply
to the subtype. The following assertions could be part
of the contract of a questionnaire subtype:

rlo <http://... /VideoBasedQuestionnaire>
 require
 mandatory <http://... /Questionnaire>
 mandatory sys.requiresVideoFormat ≠ NULL
 ...
 ensure
 <http://... /Questionnaire>
 ...

In this example, contract inheritance is guaranteed

by adding the parent type contract to the current type
list of postconditions. Major shortcomings of this
approach are the lack of support by current metadata
standards, the inexistence of a common language for
type description and the need for a means of making
accessible the available classes. However, such defi-
nitions would enable more specialized metadata
schemas to be defined.

5. Aggregation

Most learning objects are compositions of others:
this nature is on the basis of reusable learning
resources. LOM category 1.8:AggregationLevel identi-
fies four levels of aggregation, numbered from 1 (raw
media data or fragments) to 4 (a set of courses that lead
to a certificate). A level n object can contain a number
of level n-1 objects or can recursively contain objects
of level n. Likewise, category 1.7:Structure classifies
the different types of aggregation from their internal
structure: collection, linear, hierarchical or networked.
However, being merely a way of classifying objects by
their granularity, LOM information in categories 1.7

and 1.8 does not enforce any dependency on the aggre-
gate or its constituent parts. In contrast, aggregation
should be seen as a semantic relationship, which
implies two major constraints: properties propagate
from aggregate to parts (and vice versa), and no cycles
of aggregation links are permitted.

The contract of a learning object that is an aggregate
of others is often affected by the contracts of its parts.
Consider a LOM-conformant level 3 learning object
(course) in Spanish: as the course is a composition of
lower-level objects, their language will have to be
Spanish as well. So, whenever the elements comprising
an object are other learning objects, their contracts will
need to be conformant to what the aggregate contact
states: this is semantic aggregation. When representing
semantic aggregation in metadata records, a number of
data items depend on information in other objects, as
stated in Table 4.

Table 4. Aggregation constraints

LOM Category Constraint

1.3:Language
5.1:InteractivityType
5.7:TypicalAgeRange
6.1:Cost
6.2:Copyright&Restrictions

The desired value for the
aggregate restricts the value of the
parts to be chosen

1.7:Structure
1.8:AggregationLevel
5.3:InteractivityLevel
5.4:SemanticDensity
5.8:Difficulty

The value (level) in the aggregate
must be greater or equal than the
value of its parts

2.2:Status Completion on the aggregate
enforces completion on every part

4.1:Format Aggregate incorporates all the
formats in its parts

4.2:Size
4.7:Duration
5.9:TypicalLearningTime

Aggregate values calculate from
the sum of the values of its parts

4.3:Location Location of the parts has to be
publicly accessible

4.4:Requirement
4.6:OtherPlatformRequirements

Aggregate value is made up of all
the requirements in its parts

When a learning object is part of a higher-level

object, it is important to consider whether this should
be set in its metadata record or not. Reusability asks for
the components of an aggregation to be built without any
knowledge about it, in order to facilitate its future reuse,
so it must be the aggregate responsibility to compose all
the parts and to keep track of them. Also, learning object
authors (or automated systems) have to carefully pick
out the parts constituting an aggregate, since its
contract will impose conditions to be satisfied by the
parts before they can work together. In the following
example, a learning object MyLO that displays a Flash-
animated example of the Quicksort algorithm, is under
consideration by a composer agent [8] in order to
integrate it into a Java course object:

rlo <http://... /MyLO>
 require
 mandatory lrn.language = es
 mandatory sys.browser >= V5_browser
 mandatory sys.requirement = FlashPlugIn
 mandatory ctx.cost = true
 reco
 ensure

mmended ctx.time = 0.5h

 lrn.knows(qSort)[90]

Due to propagation, the aggregate learning time will

remain unknown until the total number of pieces are
assembled since it is calculated from them. Availability
asks for MyLO to be publicly accessible whenever the
aggregate is being delivered or used, but also for its
usage fee to be paid. As MyLO is not composed of
other learning objects (it is a leaf in the aggregation
tree), acyclicness is guaranteed given that all the
potential cycles would end here. The aggregate
contract could be something like:

rlo <http://... /AgentGeneratedAggregate>
 require
 mandatory lrn.language = es
 mandatory sys.browser > V5_browser
 recommended ctx.time = 10h
 mandatory ctx.cost = true
 mandatory ctx.hasPart = "MyLO”
 ...
 ensure
 lrn.knows(qSort) [90]
 ...

As the example shows, MyLO design is not

constrained by pre- or post- conditions in the aggre-
gates it would be part of. It is the responsibility of the
author of the aggregate to check the consistency of the
parts with the aggregate contract and use some features
to calculate the final values of some assertions (as
learning time in our example). Also, some pre-
conditions in the aggregate contract may be required to
be stronger than those of its parts. For example,
browser requirements for the above aggregate are
stricter than the ones in MyLO, possibly due to the
existence of other parts with stronger requirements.
The new precondition hasPart appears after choosing
MyLO and as a consequence of the relationship.

We suggest stating information on relationships only
in the aggregates by using LOM item hasPart (and not
in the parts, thus avoiding the use of isPartOf). This
will allow to include information on semantic aggrega-
tions, as it forces systems to check the related
resources to a given one. This solution is consistent
with Dublin Core and ensures compatibility with it.

6. Conclusions

As it is currently defined, information on relations is

inessential because it leans on an imprecise notion of
learning object relationship. Generalization and aggre-
gation, the most common relationships in the OOP,
have been used as the material for a discussion on
LOM representation of meaningful relationships.
Learning object design by contract is a means of
formalizing metadata records that helps us to represent
the runtime commitments that these relationships bring
in when taken into the learning objects arena.

Future work should detail the implications of
learning object relationships so that full consistency in
LMS behaviour could be achieved.

7. References

[1] Brase, J., Painter, M. and Nejdl, W. “Completing LOM –
How additional axioms increase the utility of learning object
metadata”, in Proceedings of the 3rd IEEE International
Conference on Advanced Learning Technologies, ICALT’03.

[2] Dublin Core Metadata Initiative, http://dublincore.org
[Last accessed in February 2004]

[3] Farance, F. “IEEE LOM standard not yet ready for ‘prime
time’“, IEEE Learning Technology Newsletter, Jan. 2003,
vol. 5, issue 1, pp. 21-23.

[4] IEEE Learning Technology Standards Committee,
“Learning Object Metadata (LOM)”, IEEE 1484.12.1-2002.

[5] IMS Global Learning Consortium, “IMS Learning
Resource Meta-data Best Practice and Implementation
Guide”, version 1.2.1 (final specification), Sept. 2001. Online
at http://www.imsglobal.org/metadata

[6] Polsani, P. “The use and abuse of reusable learning
objects”, Journal of digital information, vol. 3, issue 4, 2002.
Online at http://jodi.ecs.soton.ac.uk/Articles/v03/i04/Polsani

[7] Sánchez, S. and Sicilia, M.A. “Expressing preconditions
in learning object contracts”, in proceedings of the Second
International Conference on Multimedia and Information &
Communication Technologies in Education, 2003, pp.1656-
1660. Online at: http://ssanchez.colimbo.net/papers_en.htm

[8] Sánchez S. et al. “Learning object repositories as
contract-based Web services”, IEEE Learning Technology
Newsletter, Jan. 2004, vol. 6, issue 1, pp. 16-18. Online at:
http://lttf.ieee.org/learn_tech/issues/january2004

[9] Sicilia, M.A. and Sánchez, S. “On the concept of
Learning Object Design by Contract”, WSEAS Transactions
on systems, Oct. 2003, vol. 2, issue 3, pp. 612-617. Online at:
http://ssanchez.colimbo.net/papers_en.htm

[10] Sosteric, M. and Hesemeier, S. “When is a learning
object not an object: a first step towards a theory of learning

objects”, International Review of Research in Open and
Distance Learning, Oct. 2002, vol. 3, issue 2.

	1. Introduction
	2. Current metadata information on relations revisited
	3. Semantic learning object relationships
	4. Generalization: discussing about the concept of learning
	5. Aggregation
	6. Conclusions
	7. References

