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The SKOS (Simple Knowledge Organization System) Core is a model for representing thesauri and similar types of 
knowledge organization systems as RDF graphs. Although it provides a basic framework for building concept 
schemes, SKOS does not carry the strictly defined semantics of formal ontology languages and thus has a number of 
shortcomings to fully port existing schemes to the Semantic Web. This paper introduces a mapping of SKOS metadata 
to an ontology-based intermediate model, whose main aim is to foster the semantic interoperability of different 
concept schemes. It has been achieved through the introduction of a common ground for the definition of concepts, 
based on the use of shared definitions already included in widely-used upper ontologies. This effort makes use of an 
upper ontology in particular: OpenCyc, the open source version of Cyc, which is currently one of the most complete 
general knowledge bases.  

1. Introduction  

The SKOS Core (Miles and Brickley, 2005a) is an application of the Resource Description Framework 
(RDF) that allows expressing a concept scheme as an RDF graph by using a number of terms. These 
terms are known as the SKOS Core Vocabulary (Miles and Brickley, 2005c). Concept schemes, as 
defined by SKOS, are “thesauri, classification schemes, subject heading lists, taxonomies, 
terminologies, glossaries and other types of controlled vocabularies”. Thus, the metadata elements in 
the SKOS vocabulary allow to represent the content and structure of concept schemes (particularly 
those that have a specific structure described by the SKOS Guide) with the aim of promoting their use 
by Semantic Web applications.  

One of the main advantage of SKOS is that it lifts any kind of organised description into an easily 
usable set of classes (Euzenat, Scharffe and Serafini, 2006). An example of the representation of a 
fragment of a concept scheme in SKOS is the extract of the Art & Architecture Thesaurus 
(http://www.getty.edu/research/conducting_research/vocabularies/aat/) shown in Table 1. Making use 
of SKOS, the information and structure of this extract can be represented as an RDF graph as shown 
in Figure 1. This example serves as an introductory illustration on how SKOS can be used to map to 
RDF a given thesaurus.  

Table 1. An extract of the Arts & Architecture Thesaurus concept scheme: the term castles.  

Term  castles  

Used for  buildings or groups of buildings intended primarily to 
serve as a fortified residence of a prince or nobleman  

Broader terms  fortifications  

Narrower terms  
châtelets  
moated castles  
qasrs  

Related terms  fortification elements  
 



 
 

Figure 1. The same extract of the Arts & Architecture Thesaurus expressed as a SKOS RDF graph.  

The use of RDF graphs as a representation mechanism has a number of benefits, such as 
allowing data to be linked to other RDF data by Semantic Web applications, or providing 
serialization capabilities for concept schemes to be encoded as a series of characters according 
to a number of RDF syntaxes (RDF/XML, N3/Turtle or N-Triple). However, although this is an 
important step towards the use of a particular vocabulary by applications, two important 
shortcomings can be identified:  

 
- First, the representation of a concept scheme as an RDF graph is not, by itself, enough to 

make it interoperable because the meaning of the terms in the SKOS vocabulary is not 
formally defined. Providing formal definitions for SKOS terms would both prevent the inherent 
ambiguities in the interpretation of some terms, and ease the shared use of SKOS-based 
schemes by including more precise definitions.  

- Second, the existence of similar concepts in different schemes suggests the possibility of 
establishing mapping criteria to foster the interoperability between them. Regarding this, the 
SKOS Mapping Vocabulary Specification draft (Miles and Brickley, 2005b) is oriented to give 
support to mappings between concepts from different schemes, but is currently in a very 
early stage. Another promising work in a similar direction is the Inter-Thesaurus Mapping, 
currently in draft version 0.1. (Miles and Matthews, n.d.). On the other hand, recent studies 
demonstrate that thesaurus mapping is not free of problems (Doerr, 2001). 

 

These two shortcomings can be summed up in one sentence: SKOS does not provide strict 
computational semantics. That is to say, the representation of a concept scheme as an RDF graph 
can not be used as the basis for performing automated tasks associated to the knowledge 
represented in the scheme. In fact, when some degree of automation is desired, the provision of a 
specific ground for the delegation of tasks to automated or semiautomated systems is necessary. 
Formalisms such as description logics (Baader et. al, 2003) provide support for the explicit definition 
of terms and properties oriented to shared management, automated processing and reasoning based 
on specific inference mechanisms. The following sections will show how the use of ontologies can 
significantly improve the interoperability of concept schemes, as the inner description logics they 



provide introduce the necessary degree of formalization.  

The rest of this paper is structured as follows. Section 2 introduces the term semantic 
interoperability (Doan, Noy and Haleevy, 2004) and provides a specific definition for the purpose of 
this work. After that, a brief introduction to the field of ontologies and the benefits of their use for the 
knowledge representation of concept schemes is provided. Section 3 presents two ontology-based 
proposals aimed at fostering semantic interoperability between SKOS concept schemes. Section 4 
completes one of the two the proposals introduced, presenting an in depth study about the most 
relevant categories in SKOS and suggesting mappings to terms in upper ontologies. Finally, section 5 
provides conclusions and some directions for further research.  

2. The role of ontologies  

As it has been mentioned in the previous section, RDF representations are a big step towards 
permitting Semantic Web applications to use and manage concept schemes. However, a number of 
shortcomings were also pointed out. This section deals with the problem of semantic interoperability 
between thesauri and introduces ontologies as a useful tool towards attaining this goal. 

Most thesauri include terms which are also included in other thesauri, sometimes with exactly the 
same meaning, sometimes with just a similar meaning and sometimes with a meaning significantly 
different. For example, the term back in a anatomy thesaurus would be defined as “the rear part of the 
human body, especially from the neck to the end of the spine”, while a sports glossary could perhaps 
include the same term with a slightly different meaning: “a position behind the front line of players”. It 
is also feasible to think that this latter glossary might include a second definition of the term, to 
designate “a player in the back position”. This example, that is illustrated in Figure 2, points out the 
fact that any term in a SKOS scheme can have different meanings and consequently refer to different 
terms in a knowledge base. The notation used for concept representation in Figure 2 separates the 
glossary (e.g. Sports) to which a concept belongs from the concept itself (e.g. back) by means of a 
colon. 

 

 
 

Figure 2. Different meanings of the term “back” according to different glossaries.  

One of the main difficulties in attaining interoperability (as a general feature) is the lack of explicit, 
shared definitions that allow to unambiguously refer to a term. To overcome this problem, thesauri 
should include formal definitions of all their terms and relations, which should in turn be achieved by 



making use of a specific formal language (i.e. mathematical or logical). Definitions like these would be 
then referred to as “semantic definitions”. Unfortunately, this is not the case of neither the terms in the 
SKOS vocabulary nor the terms in most thesauri, as they do not provide support for the so-called 
semantic interoperability. For the purpose of this work, semantic interoperability will be defined as “the 
use of explicit semantic descriptions to facilitate concept scheme integration with the main objective of 
fostering the automated or semiautomated use of the information”. In this work, ontologies are 
introduced as a remarkable tool to attain semantic interoperability in SKOS concept schemes.  

In the field of philosophy, the term ontology is defined as the theory of objects and their ties. 
Therefore, the definition of a shared ontology for a given domain provides criteria for distinguishing 
different types of objects in the domain as well as their relations (Corazzon, n.d.). Outside philosophy, 
ontologies can be understood as conceptualizations that provide an appropriate context for the 
interpretation of concepts in a given domain. An often-cited definition by Gruber (1993) states that an 
ontology is “an explicit specification of a conceptualization”. In this sense, ontology engineering 
becomes of particular interest when applied to conceptual modeling. 

The existence of ontology-based schemes in a domain of discourse is essential when some 
degree of automation is desired. The inner logics in the ontology allows automated systems to 
perform tasks according to the elements defined, which is the basis for applying the principles of 
Semantic Web in the domain of the ontology. However, creating a new ontology from scratch is a 
huge effort that might imply to define the (probably hundreds of) terms and relations that are needed 
before the elements in the current concept scheme can be explicitly defined and situated in the right 
place in the full hierarchy of concepts. To avoid defining time and time again all the concepts from 
which others derive, upper ontologies can be used. Upper ontologies are large general knowledge 
bases that include definitions of concepts, relations, properties, constraints, and instances, as well as 
reasoning capabilities on these elements. They are limited to generic, high-level, abstract concepts, 
general enough to address a broad range of domains, not including concepts specific to given 
domains, or do not focusing on them. One of the major efforts in the field is OpenCyc 
(http://www.opencyc.org), an upper ontology “for all of human consensus reality” which includes more 
than 47,000 concepts, 300,000 assertions about them, an inference engine, a browser for the 
knowledge base and other useful tools. It is the open source version of the larger Cyc knowledge 
base (Lenat, 1995), a huge representation of the fundamentals of human knowledge.  

An in-depth study of the SKOS vocabulary suggests its extension with the aim of correcting the 
shortcomings identified in section 1. However, although such an extension would help both to avoid 
ambiguities and to enable inter-thesaurus semantic interoperability, the solution to the problems 
pointed out in the preceding sections should be better focused as a non-invasive contribution. Non-
invasive in the sense that the SKOS Core should not be modified as a result of this activity, but also, 
non-invasive in the sense that current SKOS schemes should not require modifications. To achieve 
the goals expressed before, we propose the use of formal representations to provide the SKOS terms 
with computational semantics, as well as the introduction of an intermediate ontology-based model 
built on top of the SKOS information. Both proposals stand on one upper ontology in particular, 
OpenCyc, but they could be easily adapted to others. It is worth mentioning that some work on the 
integration of conceptual structures into upper ontologies has been already carried out, like the 
research described in Sicilia et al. (2006), where Knowledge Management conceptual structures are 
integrated into the OpenCyc ontological base for the practical purpose of providing the required 
support for the development of intelligent applications. 

3. Attaining semantic interoperability  

In section 1, two disadvantages of the current state of SKOS were pointed out:  

a) The lack of formalization of the terms in the SKOS Core. For example, the SKOS property 
narrower has been created to represent the fact that a concept “is more specific in meaning 
than other” but, what does narrower exactly means in computational terms? What are the 
implications of its formal definition? 

b) The need for mapping criteria to foster the semantic interoperability between thesauri. If the 



same concept can have different meanings across different vocabularies, is there a way to 
map a concept in a SKOS scheme to a term in an upper ontology that provides a formal 
definition for it? The existence of such mapping criteria would allow, e.g. to specify the exact 
meaning of the concept back in one glossary (where it refers to one and only one particular 
meaning) and thus would foster the reuse of this concept in related glossaries which would 
not need to redefine back again, but instead to link to it. 

The first problem is addressed by proposing a set of precise definitions for the terms (classes and 
properties) in the SKOS vocabulary through mapping them to terms in an upper ontology (OpenCyc is 
used here as a case study). This approach is described in section 3.1 and applied to the modeling of 
the semantic relationships properties. The solution described in section 3.1 represents a general 
mapping, although particular mappings stating something like “this term has this specific meaning in 
this context” can also be carried out. As part of this proposal, Section 4 provides an in depth analysis 
of the most relevant categories of elements in SKOS from the point of view of the semantic 
interoperability.  

The second problem is addressed by defining an intermediate model to map the concepts in a SKOS 
scheme to terms in an upper ontology (specifically OpenCyc). Explicitly defining the terms in the 
SKOS vocabulary by using an ontology language both improves the effective integration of 
semantically heterogeneous thesauri and fosters the automated or semiautomated processing of 
SKOS schemes by Semantic Web applications in specific contexts of use, preserving, at the same 
time, the original SKOS information. This approach is described in more detail in sections 3.2 and 3.3. 
 
3.1. Providing formal definitions for SKOS metadata elements  

Metadata elements in the SKOS vocabulary are divided into six categories: conceptual elements, 
labelling properties, documentation properties, semantic relationships, meaningful collections of 
concepts and subject indexing properties. The properties in the semantic relationships category, in 
particular, are metadata elements aimed at “asserting semantic (paradigmatic) relationships between 
concepts”. However, SKOS does not provide a clear, formal definition of what a semantic relationship 
is. In addition, some of the relationships are described in a purposefully vague language. Both factors 
somewhat hamper the use of the information on relationships by semantic Web applications. Table 2 
shows the relationship elements in SKOS.  

Table 2. SKOS relations.  

SKOS relation  Definition  Comment  
semanticRelation A relation of meaning  Not to be used directly, but 

as a super-property for all 
properties denoting a 
relationship of meaning  

narrower  The scope (meaning) of 
one concept falls 
completely within the 
scope of another  

Narrower concepts are 
typically rendered as 
children in a concept 
hierarchy tree  

broader  A concept that is more 
general in meaning than 
another  

Broader concepts are 
typically rendered as 
parents in a concept 
hierarchy tree  

related  (weak semantics) A 
concept with which there 
is an associative semantic 
relationship  

Expresses the fact that two 
concepts are in some way 
related, and that the 
relationship should not be 
used to create a hierarchy  

 
The class skos:CollectableProperty1 supports a generic mechanism by which collections 

can be involved in semantic relationships (and other sorts of statement). However, the semantics of 

                                                 
1 Both SKOS elements and OpenCyc terms and relations are shown in courier font. 



this mechanism are not explicit in the SKOS Guide. In fact, even though each and every relationship 
in the SKOS Guide is informally defined, the lack of explicit formal descriptions can be considered a 
problem for some applications. To perform reasoning tasks on the knowledge defined, thus avoiding 
misinterpretation of terms across different thesauri, computational agents require machine-readable 
descriptions (in addition to the human-readable versions of the information). These can be provided in 
the form of explicit definitions in an ontology language such as OWL. Table 3 is a partial example on 
the effort to map SKOS relations to formally defined predicates in the OpenCyc knowledge base. 
Doing this, we are providing SKOS elements with a machine-consumption semantics that will 
disambiguate any possible interpretation.  

 
Table 3. A mapping of SKOS relations to OpenCyc predicates.  

SKOS relation  OpenCyc term  Comments  
semanticRelation  Predicate  Either a property of things (unary) or a 

relationship holding between two or 
more things (n-ary).  

narrower  genls  
 
 
subSet  
 
 
 
 
 
TaxonomicPredicate  

Relates a given collection to those 
collections that subsume it.  
 
Relates a set or collection SUB to a set 
or collection SUPER whenever the 
extent (the set consisting of all of its 
elements) of SUB is a subset of the 
extent of SUPER.  
 
Used to help specify the position of a 
thing within one of the major 
taxonomies or hierarchies in the 
OpenCyc ontology.  

broader  inverse of genls  Relates the subsumed collection to the 
subsumer collection.  

related  not TaxonomicPredicate Any predicate not used to help specify 
the position of a thing within one of the 
taxonomies in OpenCyc.  

 
 
3.2. An intermediate model to map SKOS terms to upper ontologies  

The same concept can have different meanings across different thesauri. To both avoid 
misinterpretations and foster automated reasoning on the terms of the thesauri, terms can be linked to 
a general knowledge ontology such as OpenCyc. This should be made without the need of modifying 
existing SKOS records for existing SKOS concept schemes. Figure 3 depicts how this can be done 
through a non-invasive intermediate model. In the example, inspired by an interesting study on the 
existence of different learning object conceptualizations by McGreal (2004), one concept in a 
particular thesaurus, learning object (Polsani, 2002), is linked to specific meanings depending on its 
different characterizations. The example assumes that a SKOS scheme has been created from the 
original concepts in the thesaurus. On top of this information, and probably performed by other 
persons (experts either in upper ontologies or in learning ontologies), a number of intermediate 
records can be built to link the concept learning object to terms formally defined in an ontology. 
 

In this particular case, and following the mentioned discussion by McGreal, one organization 
could define learning object as “anything and everything” and thus link this concept to the term 
oc:Thing in OpenCyc (the prefix “oc” indicates that it is an OpenCyc term, so its meaning is 
unambiguously stated as a formal definition). In OpenCyc, oc:Thing is the top concept from which 
all the others derive. On the other hand, if we consider learning objects to be digital entities, they 
could be considered to be instances of oc:ComputerFileCopy, i.e. “information bearing things that 
contain digitally coded information readable by a computer”. Although this definition is controversial 
due to the dynamic nature of many learning objects, it serves the purpose of abstracting them as 
elements available at a given URI. Finally, an organization maintaining a domain ontology on learning 



terms (such as the Learning Technology group at the IE Research Unit, http://www.cc.uah.es/ie/) 
could find useful to link the concept learning object to, for example, the term RLO in its ontology, RLO 
standing for reusable learning object. The prefix IELearning in Figure 3 indicates the origin of the 
ontology term.  

 
 

Figure 3. An intermediate model allows mapping a SKOS concept to terms in different ontologies.  

This approach, that consists of building an extra layer of links to concepts, will not be considered 
complete until the reason why the skos:concept is being linked to a concept can be established. 
That is to say: the conditions under which a particular link is considered operational (or the context 
that defines those conditions) must be stated as part of the task of construction of the layer of links. 
Returning to our previous example, the term back can be linked to different concepts in different sport 
glossaries. Focusing on the different meanings that the term back has in two sports, football and 
soccer, it becomes clear that at least two links can be created to connect back to terms belonging to 
glossaries specific to each sport in particular. In soccer, for example, back is a synonym of defender 
and is accordingly defined as “a player of the team that does not have possession of the ball”. On the 
other hand, the meaning of back in a football glossary is “a running back, either the halfback or the 
fullback”. Besides, the term back has a completely different meaning in human anatomy: “the rear part 
of the human body, etc.”. Using an intermediate layer of links, as proposed, can help to link the term 
back in a SKOS scheme to terms in different glossaries as shown in Figure 3, but the specific context 
for which one meaning in particular (of the three available in the example) is operational is not yet 
formally stated as part of the layer of links.  

 
The knowledge base of Cyc, and consequently that of its open source version OpenCyc, is 

divided into locally-consistent contexts called microtheories. The concept oc:Microtheory serves 
to group a set of assertions (about time, topic, space, granularity, etc.) together that share some 
common assumptions, defining “an atemporal abstract informational thing that represents a context”. 
Consequently, the assertions in a oc:Microtheory constitute the content of that 
oc:Microtheory. It is important to indicate that “all the assertions stated to be true in one 
microtheory will also be true (by inference) in more specialized microtheories that depend on the 
content of that microtheory”.  

 
This notion of context can be considered to be the “missing link” between a SKOS concept and 

the concepts to which it is linked to, and provides full sense (in semantic interoperability terms) to the 



modeling of a layer of links. The information about the context allows to write assertions in the 
following manner: “in this particular context, this concept in a SKOS scheme can be linked to a 
concept in other glossaries or ontologies”, which is formally implemented by means of a ternary 
predicate to be used in quadruplets including information about the context, the SKOS concept and 
the linked concept in the following way: 
 
(linkedTo oc:microtheory skos:concept oc:Thing) 

The predicate linkedTo, specifically created for the purpose of this work, might be somewhat 
related or derived from oc:ist, a predicate used to relate an assertion to the microtheories in which 
that assertion is true. Figure 4 shows an updated version of the back modeling example where 
microtheories have been incorporated. 
 
 

 
 

Figure 4. Using microtheories to map SKOS concepts to specific definitions.  

Another informative example is that of the term “abdomen”. This term has different meanings 
depending on the animal which it is being applied to. This way, a human anatomy glossary might 
contain the following definition: “the belly, the part of the trunk between thorax and the perineum”, 
while for animals the definition of abdomen could be quite different. In hermit crabs, for example, 
abdomen is the “region of the body furthest from the mouth”, although in ants, abdomen is “the third 
section of the insect body (head, thorax, abdomen) which consists of the propodeum and metasoma”. 
In this example, the information that was, for the previous example, represented in Figure 4, can be 
formally expressed in the form of assertions like this: 
 
(linkedTo Human-Microtheory abdomen HumanAnatomyGlossary:abdomen) 

(linkedTo Animal-Crustacean-Crab-Microtheory abdomen CrabGlossary:abdomen) 

(linkedTo Animal-Insect-Ant-Microtheory abdomen AntGlossary:abdomen) 

To conclude, it is significant to mention that in a generic microtheory of animals (e.g. Animal-
Microtheory), that is to say, a context where we were dealing exclusively with concepts applicable 
to animals, the two last assertions might be valid but the first one would never be. This is because  
Human-Microtheory does not derive from the more general Animal-Microtheory, but Animal-



Crustacean-Crab-Microtheory Animal-Insect-Ant-Microtheory yet do derive: they are 
both subsumed by Animal-Microtheory. 
 
3.3. Linking terms in SKOS schemes to upper ontologies  

To link terms in a SKOS scheme to terms in an upper ontology such as OpenCyc, a method 
described elsewhere (Abran et al., n.d.) can be used. This process can be roughly described in four 
steps:  

1. Find one or several terms that subsume the category under consideration.  
2. Check carefully that the mapping is consistent with the rest of the subsumers inside the upper 

ontology.  
3. Provide the appropriate predicates to characterize the new category.  
4. Edit it in an ontology editor to come up with the final formal version.  

 
This process has the advantage of allowing the individual work of an expert, whose outcomes can 

then be contrasted with the work of others. The results of the process are much more efficient and 
structured than engineering a new ontology, since the argumentation against or in favor of a given 
concept or predicate is put in the formal context of an upper ontology.  

An innovative approach, aimed at the automated population of knowledge bases from information 
in the Web, is being explored by Shah et al. (2006). This approach, which continues the research 
work by Matuszek et al. (2005) about the population of Cyc from the Web through a method to assist 
in entering the knowledge, should be kept in mind as a reference to explore assisted methods to 
create links from SKOS concepts to terms in upper ontologies. 

 
4. Other SKOS categories  

Apart from the semantic relationships category, the metadata elements in the SKOS vocabulary are 
classified into other six categories: Conceptual elements, Labelling properties, Documentation 
properties, Concept schemes, Meaningful collections of concepts and Subject indexing elements. This 
section studies the semantic implications of the most relevant terms in those categories and 
discusses their implications in the light of the definitions in the OpenCyc knowledge base.  
 
4.1. Conceptual elements  

Only one element forms the category here referred to as conceptual elements: the skos:Concept 
class. Concept, defined in SKOS as “an abstract idea or notion; a unit of thought in SKOS”, allows to 
assert that a particular resource is itself a concept. This skos:Concept compares to the universal 
collection oc:Thing in Opencyc. oc:Thing is the collection which contains everything there is: 
every thing in the Cyc ontology –every oc:Individual (of any kind) and every oc:Collection– is 
an instance of oc:Thing. Similarly, every oc:Collection is a subcollection of oc:Thing.  

4.2. Labelling properties  

SKOS Core labellling properties (skos:prefLabel, skos:altLabel, skos:hiddenLabel, 
skos:prefSymbol and skos:altSymbol) are aimed at helping to assign some sort of token to a 
resource. As the tokens are “intended to be used to denote the resource in natural language 
discourse and/or in representations intended for human consumption”, the semantic implications of 
the elements in this category are few (if they can be considered useful at all). It becomes difficult to 
imagine inferences based on the information provided by elements explicitly defined as intended for 
human consumption.  

Nevertheless, at least a weak inference can be deduced from the existence of labelling 
information. When e.g. displaying information about a resource that includes more than one labelling 
property, an inference mechanism can be programmed to always choose a preferred name over any 
other kind of name. In this manner, the preferred label will be always chosen to refer to the concept in 



detriment of other labels that could exist. This behaviour can be modeled by making use of the 
predicate oc:preferredNameString. The existence of a triplet (oc:preferredNameString, 
STRING, THING) states that the STRING is a preferred name to use when referring to THING. Similar 
inferences can be programmed for the other labelling properties (e.g. to perform multilingual or 
symbolic labelling) even though their usefulness is arguable.  

4.3. Documentation properties  

The hierarchy of documentation properties in SKOS (skos:note, skos:definition, 
skos:scopeNote, skos:example, skos:historyNote, skos:editorialNote, 
skos:changeNote) is composed of seven properties that can be used “to add human-readable 
documentation to the description of a concept”. Used only to label a concept, the usefulness of these 
properties can be as arguable as the information about labelling properties. However, the so-called 
’recommended usage patterns’ for the SKOS Core documentation provide room for more complex 
modeling. There are three recommended usage patterns: 
 
- Documentation as an RDF Literal: the simplest pattern for using the SKOS Core documentation 

properties. In this pattern, the property value is represented as an RDF literal.  
- Documentation as a Related Resource Description: the documentation is structured as a related 

resource description, what allows to represent complex documentation structures.  
- Documentation as a Document Reference: allows to refer to documentation that is itself a 

document, via the URI of that document.  
 
From the point of view of introducing some kind of inference mechanisms, the more interesting pattern 
is the documentation as a related resource description one. This pattern allows to include information 
about the properties of the documentation itself, such as the creator(s) of the documentation, dates 
related to it, or its intended audience, among others. In an upper ontology, several predicates can be 
found to represent the same or very similar knowledge. For example, the predicate oc:createdBy 
relates something to its creator(s). In this way, any triplet (oc:createdBy THING AGENT) means 
that AGENT is “one of the people, corporations, publishers, etc., responsible for the invention or 
bringing into being of THING”. Similarly, date information can be modeled through the use of many 
different predicates that provide support for information related to a date, as for example:  

- oc:myCreationDate, a binary predicate to be used in triplets (oc:myCreationDate 
CONSTANT DATE), informs that the atomic term that is CONSTANT was created at DATE. 
Depending on the precision of the bookkeeping information stored for CONSTANT, DATE may 
have varying degrees of accuracy.  

- oc:dateOfPublication-CW, a binary predicate whose meaning for a triplet 
(oc:dateOfPublication-CW CW DATE) is that the CW (which stands for Conceptual Work) 
was published on DATE.  

 

But in general, the highest level predicate of the hierarchy of properties that might help to model this 
information is oc:ComplexTemporalPredicate, a specialization of 
oc:BinaryTemporalRelationPredicate, whose instances relate temporal things (instances of 
oc:TemporalThing). A complex temporal predicate might be used to relate “complicated temporal 
objects such as events, tangible objects, and proper time intervals”.  

4.4. Concept schemes  

After what is stated in the SKOS Core Guide, a concept can be defined either in relation to other 
concepts (as part of an internally coherent concept scheme), or as a stand-alone resource. The SKOS 
Guide defines a concept scheme as “a set of concepts, optionally including statements about 
semantic relationships between those concepts”, and provides the class skos:ConceptScheme for 
authors to assert “that a resource is a concept”. However, this definition of concept scheme is very 
similar to the earlier mentioned definition by Gruber (1993): “an explicit specification of a 



conceptualization”. Consequently, providing information for the skos:ConceptScheme metadata 
element may be used to assert that a particular resource is itself an ontology. Using the 
skos:hasTopConcept, ontologies can be linked to their top level concepts in the following way:  

(skos:hasTopConcept OpenCyc oc:Thing) 

It is also possible to assert that a concept belongs to a particular concept scheme, by using the 
skos:inScheme property. For example:  

(skos:inScheme BillGates OpenCyc) 

This kind of assertion can be useful to situate terms when several ontologies are being used, for 
example whenever there is a need for working with multiple domains and concepts (and/or 
relationships) cross-cut domains.  

4.5. Meaningful collections of concepts  

This category of metadata elements allows to define meaningful groupings of concepts which are 
called collections. To assert labelled collections, the vaguest form of meaningful collection of concepts 
in SKOS, it is just necessary to use the skos:Collection class to set the collection name and the 
skos:member property to relate that collection to the concepts which belong to it. No other meaning, 
apart from membership, can be inferred from such declarations. The following RDF code is an 
example of the definition of a labelled collection of Italian opera composers: 

 
<rdf:RDF 
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
  xmlns:skos="http://www.w3.org/2004/02/skos/core#" 
  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> 
   
  <skos:Collection> 
    <rdfs:label>italian opera composers</rdfs:label> 
    <skos:member rdf:resource="http://www.example.com/concepts#verdi"/> 
    <skos:member rdf:resource="http://www.example.com/concepts#mascagni"/> 
    <skos:member rdf:resource="http://www.example.com/concepts#bellini"/> 
    <skos:member rdf:resource="http://www.example.com/concepts#puccini"/> 
  </skos:Collection> 
 
  <skos:Concept rdf:about="http://www.example.com/concepts#Verdi"> 
    <skos:prefLabel>Giusseppe Verdi</skos:prefLabel> 
  </skos:Concept> 
 
  <skos:Concept rdf:about="http://www.example.com/concepts#mascagni"> 
    <skos:prefLabel>Pietro Mascagni</skos:prefLabel> 
  </skos:Concept> 
 
  <skos:Concept rdf:about="http://www.example.com/concepts#bellini"> 
    <skos:prefLabel>Vincenzo Bellini</skos:prefLabel> 
  </skos:Concept> 
 
  <skos:Concept rdf:about="http://www.example.com/concepts#puccini"> 
    <skos:prefLabel>Giacomo Puccini</skos:prefLabel> 
  </skos:Concept> 
 
</rdf:RDF> 
 
 

The class skos:Collection can be mapped to the concept oc:SetOrCollection, a term in 



OpenCyc describing instances “intrinsically associated with an intensional criterion for membership, 
which is a property or group of properties possessed by all of its elements”. At the same time, the 
skos:member property can be linked to oc:elementOf, a predicate that in OpenCyc relates a 
oc:Thing and a oc:SetOrCollection meaning that the oc:Thing is an element of the given 
mathematical set or collection. The class skos:OrderedCollection, a subclass of 
skos:Collection, defines an ordered collection of concepts whose members are linked from a 
skos:memberList property to the instance of the collection. In ordered collections a membership 
rule applies, implemented through a logical function named elementOfList. The term 
oc:TotallyOrderedCollection in OpenCyc, “a collection whose instances are conventionally 
regarded as being ordered by some relation”, provides the formal definition for the same concept and 
can thus be linked to it by using the method described earlier. This kind of modeling is richer as it 
allows to link the relationship to the kind of ordering via the oc:orderingRelation predicate, which 
permits, for example, to implement a routine that looks for all the collections that follow the same 
sorting criteria.  

Table 4. Mapping SKOS collection concepts to terms in OpenCyc.  

SKOS concept  Definition  OpenCyc concept  
Labellled 
collection  

A meaningful collection of 
concepts  

oc:SetOrCollection  

Ordered collection  An ordered collection of 
concepts, where both the 
grouping and the ordering are 
meaningful  

oc:TotallyOrderedCollection 

member  A member of a collection  oc:elementOf  
 

In SKOS schemes collections can also be nested, but this capacity is a mere way of arranging 
their declarations and, consequently, has not semantic implications. Table 4 summarizes the previous 
discussion about collections.  

4.6. Subject indexing properties  

The properties skos:subject and skos:primarySubject in the SKOS Core can be both used 
for subject indexing of information resources on the Web. Also the inverse properties 
skos:isSubjectOf and skos:isPrimarySubjectOf can be used to make the same assertions 
but in the contrary direction. The difference between skos:subject and skos:primarySubject 
lies in the fact that one information resource may have more than one skos:subject, only one (or 
none) of them being the skos:primarySubject.  

Even though the subject indexing properties can be used for formal description of terms, the 
scope of subject in SKOS is much broader, and includes any relation to very diverse resources. In 
ontology based representations, these properties could be mapped to (almost) any binary predicate. 
Obviously, such an open mapping would not provide much information, but in OpenCyc the predicate 
oc:subjectOfInfo, provided to link any oc:Thing to some oc:InformationStores, fits well 
with indexing information and can be used as concept of reference to delimit the scope of these 
properties.  

5. Conclusions and further research directions  

SKOS has proven a powerful yet simple vehicle for presenting and sharing terminology, but it does 
not provide any form of computational semantics. The effort described in this paper is the first step to 
the description of a complete non-intrusive model oriented to foster semantic interoperability among 
thesauri using SKOS schemas. The main purpose is to provide SKOS schemes with computational 
semantics, as in the current situation, the representation of a concept scheme as an RDF graph can 
not be used as the basis for performing automated tasks associated to the knowledge represented in 



the scheme. Current efforts in the field insist in the construction of inter-thesauri mappings but do not 
focus on semantic interoperability. Herein, the lack of a computational semantics in the SKOS Core, 
has been approached from two directions: proposing a set of precise definitions for the terms in the 
SKOS vocabulary through mapping them to terms in an upper ontology, and defining an intermediate 
model to map the concepts in a SKOS scheme to terms in an upper ontology. In both cases, 
OpenCyc has been used as a case study. 

  

Regarding the use of upper ontology terms from OpenCyc, the opinion of other experts will be 
required in order to validate the links between the SKOS elements and the corresponding OpenCyc 
classes and properties. The authors consider these opinions very valuable and thus are open to 
positive feedback on the precision and usefulness of the definitions included. Future work should 
gather feedback from ontology experts and other research units working in similar projects qith the 
objective of publishing a working draft describing the problems found, the lessons learned, and 
proposing future actions on this topic. 
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