

MAKING USE OF UPPER ONTOLOGIES TO FOSTER
INTEROPERABILITY BETWEEN SKOS CONCEPT

SCHEMES

SALVADOR SANCHEZ-ALONSO
ELENA GARCIA-BARRIOCANAL

University of Alcalá

Ctra. de Barcelona km. 33,600 – Alcalá de Henares 28871 (SPAIN)
{salvador.sanchez, elena.garciab}@uah.es

The SKOS (Simple Knowledge Organization System) Core is a model for representing thesauri and similar types of
knowledge organization systems as RDF graphs. Although it provides a basic framework for building concept
schemes, SKOS does not carry the strictly defined semantics of formal ontology languages and thus has a number of
shortcomings to fully port existing schemes to the Semantic Web. This paper introduces a mapping of SKOS metadata
to an ontology-based intermediate model, whose main aim is to foster the semantic interoperability of different
concept schemes. It has been achieved through the introduction of a common ground for the definition of concepts,
based on the use of shared definitions already included in widely-used upper ontologies. This effort makes use of an
upper ontology in particular: OpenCyc, the open source version of Cyc, which is currently one of the most complete
general knowledge bases.

1. Introduction

The SKOS Core (Miles and Brickley, 2005a) is an application of the Resource Description Framework
(RDF) that allows expressing a concept scheme as an RDF graph by using a number of terms. These
terms are known as the SKOS Core Vocabulary (Miles and Brickley, 2005c). Concept schemes, as
defined by SKOS, are “thesauri, classification schemes, subject heading lists, taxonomies,
terminologies, glossaries and other types of controlled vocabularies”. Thus, the metadata elements in
the SKOS vocabulary allow to represent the content and structure of concept schemes (particularly
those that have a specific structure described by the SKOS Guide) with the aim of promoting their use
by Semantic Web applications.

One of the main advantage of SKOS is that it lifts any kind of organised description into an easily
usable set of classes (Euzenat, Scharffe and Serafini, 2006). An example of the representation of a
fragment of a concept scheme in SKOS is the extract of the Art & Architecture Thesaurus
(http://www.getty.edu/research/conducting_research/vocabularies/aat/) shown in Table 1. Making use
of SKOS, the information and structure of this extract can be represented as an RDF graph as shown
in Figure 1. This example serves as an introductory illustration on how SKOS can be used to map to
RDF a given thesaurus.

Table 1. An extract of the Arts & Architecture Thesaurus concept scheme: the term castles.

Term castles

Used for buildings or groups of buildings intended primarily to
serve as a fortified residence of a prince or nobleman

Broader terms fortifications

Narrower terms
châtelets
moated castles
qasrs

Related terms fortification elements

Figure 1. The same extract of the Arts & Architecture Thesaurus expressed as a SKOS RDF graph.

The use of RDF graphs as a representation mechanism has a number of benefits, such as
allowing data to be linked to other RDF data by Semantic Web applications, or providing
serialization capabilities for concept schemes to be encoded as a series of characters according
to a number of RDF syntaxes (RDF/XML, N3/Turtle or N-Triple). However, although this is an
important step towards the use of a particular vocabulary by applications, two important
shortcomings can be identified:

- First, the representation of a concept scheme as an RDF graph is not, by itself, enough to

make it interoperable because the meaning of the terms in the SKOS vocabulary is not
formally defined. Providing formal definitions for SKOS terms would both prevent the inherent
ambiguities in the interpretation of some terms, and ease the shared use of SKOS-based
schemes by including more precise definitions.

- Second, the existence of similar concepts in different schemes suggests the possibility of
establishing mapping criteria to foster the interoperability between them. Regarding this, the
SKOS Mapping Vocabulary Specification draft (Miles and Brickley, 2005b) is oriented to give
support to mappings between concepts from different schemes, but is currently in a very
early stage. Another promising work in a similar direction is the Inter-Thesaurus Mapping,
currently in draft version 0.1. (Miles and Matthews, n.d.). On the other hand, recent studies
demonstrate that thesaurus mapping is not free of problems (Doerr, 2001).

These two shortcomings can be summed up in one sentence: SKOS does not provide strict
computational semantics. That is to say, the representation of a concept scheme as an RDF graph
can not be used as the basis for performing automated tasks associated to the knowledge
represented in the scheme. In fact, when some degree of automation is desired, the provision of a
specific ground for the delegation of tasks to automated or semiautomated systems is necessary.
Formalisms such as description logics (Baader et. al, 2003) provide support for the explicit definition
of terms and properties oriented to shared management, automated processing and reasoning based
on specific inference mechanisms. The following sections will show how the use of ontologies can
significantly improve the interoperability of concept schemes, as the inner description logics they

provide introduce the necessary degree of formalization.

The rest of this paper is structured as follows. Section 2 introduces the term semantic
interoperability (Doan, Noy and Haleevy, 2004) and provides a specific definition for the purpose of
this work. After that, a brief introduction to the field of ontologies and the benefits of their use for the
knowledge representation of concept schemes is provided. Section 3 presents two ontology-based
proposals aimed at fostering semantic interoperability between SKOS concept schemes. Section 4
completes one of the two the proposals introduced, presenting an in depth study about the most
relevant categories in SKOS and suggesting mappings to terms in upper ontologies. Finally, section 5
provides conclusions and some directions for further research.

2. The role of ontologies

As it has been mentioned in the previous section, RDF representations are a big step towards
permitting Semantic Web applications to use and manage concept schemes. However, a number of
shortcomings were also pointed out. This section deals with the problem of semantic interoperability
between thesauri and introduces ontologies as a useful tool towards attaining this goal.

Most thesauri include terms which are also included in other thesauri, sometimes with exactly the
same meaning, sometimes with just a similar meaning and sometimes with a meaning significantly
different. For example, the term back in a anatomy thesaurus would be defined as “the rear part of the
human body, especially from the neck to the end of the spine”, while a sports glossary could perhaps
include the same term with a slightly different meaning: “a position behind the front line of players”. It
is also feasible to think that this latter glossary might include a second definition of the term, to
designate “a player in the back position”. This example, that is illustrated in Figure 2, points out the
fact that any term in a SKOS scheme can have different meanings and consequently refer to different
terms in a knowledge base. The notation used for concept representation in Figure 2 separates the
glossary (e.g. Sports) to which a concept belongs from the concept itself (e.g. back) by means of a
colon.

Figure 2. Different meanings of the term “back” according to different glossaries.

One of the main difficulties in attaining interoperability (as a general feature) is the lack of explicit,
shared definitions that allow to unambiguously refer to a term. To overcome this problem, thesauri
should include formal definitions of all their terms and relations, which should in turn be achieved by

making use of a specific formal language (i.e. mathematical or logical). Definitions like these would be
then referred to as “semantic definitions”. Unfortunately, this is not the case of neither the terms in the
SKOS vocabulary nor the terms in most thesauri, as they do not provide support for the so-called
semantic interoperability. For the purpose of this work, semantic interoperability will be defined as “the
use of explicit semantic descriptions to facilitate concept scheme integration with the main objective of
fostering the automated or semiautomated use of the information”. In this work, ontologies are
introduced as a remarkable tool to attain semantic interoperability in SKOS concept schemes.

In the field of philosophy, the term ontology is defined as the theory of objects and their ties.
Therefore, the definition of a shared ontology for a given domain provides criteria for distinguishing
different types of objects in the domain as well as their relations (Corazzon, n.d.). Outside philosophy,
ontologies can be understood as conceptualizations that provide an appropriate context for the
interpretation of concepts in a given domain. An often-cited definition by Gruber (1993) states that an
ontology is “an explicit specification of a conceptualization”. In this sense, ontology engineering
becomes of particular interest when applied to conceptual modeling.

The existence of ontology-based schemes in a domain of discourse is essential when some
degree of automation is desired. The inner logics in the ontology allows automated systems to
perform tasks according to the elements defined, which is the basis for applying the principles of
Semantic Web in the domain of the ontology. However, creating a new ontology from scratch is a
huge effort that might imply to define the (probably hundreds of) terms and relations that are needed
before the elements in the current concept scheme can be explicitly defined and situated in the right
place in the full hierarchy of concepts. To avoid defining time and time again all the concepts from
which others derive, upper ontologies can be used. Upper ontologies are large general knowledge
bases that include definitions of concepts, relations, properties, constraints, and instances, as well as
reasoning capabilities on these elements. They are limited to generic, high-level, abstract concepts,
general enough to address a broad range of domains, not including concepts specific to given
domains, or do not focusing on them. One of the major efforts in the field is OpenCyc
(http://www.opencyc.org), an upper ontology “for all of human consensus reality” which includes more
than 47,000 concepts, 300,000 assertions about them, an inference engine, a browser for the
knowledge base and other useful tools. It is the open source version of the larger Cyc knowledge
base (Lenat, 1995), a huge representation of the fundamentals of human knowledge.

An in-depth study of the SKOS vocabulary suggests its extension with the aim of correcting the
shortcomings identified in section 1. However, although such an extension would help both to avoid
ambiguities and to enable inter-thesaurus semantic interoperability, the solution to the problems
pointed out in the preceding sections should be better focused as a non-invasive contribution. Non-
invasive in the sense that the SKOS Core should not be modified as a result of this activity, but also,
non-invasive in the sense that current SKOS schemes should not require modifications. To achieve
the goals expressed before, we propose the use of formal representations to provide the SKOS terms
with computational semantics, as well as the introduction of an intermediate ontology-based model
built on top of the SKOS information. Both proposals stand on one upper ontology in particular,
OpenCyc, but they could be easily adapted to others. It is worth mentioning that some work on the
integration of conceptual structures into upper ontologies has been already carried out, like the
research described in Sicilia et al. (2006), where Knowledge Management conceptual structures are
integrated into the OpenCyc ontological base for the practical purpose of providing the required
support for the development of intelligent applications.

3. Attaining semantic interoperability

In section 1, two disadvantages of the current state of SKOS were pointed out:

a) The lack of formalization of the terms in the SKOS Core. For example, the SKOS property
narrower has been created to represent the fact that a concept “is more specific in meaning
than other” but, what does narrower exactly means in computational terms? What are the
implications of its formal definition?

b) The need for mapping criteria to foster the semantic interoperability between thesauri. If the

same concept can have different meanings across different vocabularies, is there a way to
map a concept in a SKOS scheme to a term in an upper ontology that provides a formal
definition for it? The existence of such mapping criteria would allow, e.g. to specify the exact
meaning of the concept back in one glossary (where it refers to one and only one particular
meaning) and thus would foster the reuse of this concept in related glossaries which would
not need to redefine back again, but instead to link to it.

The first problem is addressed by proposing a set of precise definitions for the terms (classes and
properties) in the SKOS vocabulary through mapping them to terms in an upper ontology (OpenCyc is
used here as a case study). This approach is described in section 3.1 and applied to the modeling of
the semantic relationships properties. The solution described in section 3.1 represents a general
mapping, although particular mappings stating something like “this term has this specific meaning in
this context” can also be carried out. As part of this proposal, Section 4 provides an in depth analysis
of the most relevant categories of elements in SKOS from the point of view of the semantic
interoperability.

The second problem is addressed by defining an intermediate model to map the concepts in a SKOS
scheme to terms in an upper ontology (specifically OpenCyc). Explicitly defining the terms in the
SKOS vocabulary by using an ontology language both improves the effective integration of
semantically heterogeneous thesauri and fosters the automated or semiautomated processing of
SKOS schemes by Semantic Web applications in specific contexts of use, preserving, at the same
time, the original SKOS information. This approach is described in more detail in sections 3.2 and 3.3.

3.1. Providing formal definitions for SKOS metadata elements

Metadata elements in the SKOS vocabulary are divided into six categories: conceptual elements,
labelling properties, documentation properties, semantic relationships, meaningful collections of
concepts and subject indexing properties. The properties in the semantic relationships category, in
particular, are metadata elements aimed at “asserting semantic (paradigmatic) relationships between
concepts”. However, SKOS does not provide a clear, formal definition of what a semantic relationship
is. In addition, some of the relationships are described in a purposefully vague language. Both factors
somewhat hamper the use of the information on relationships by semantic Web applications. Table 2
shows the relationship elements in SKOS.

Table 2. SKOS relations.

SKOS relation Definition Comment
semanticRelation A relation of meaning Not to be used directly, but

as a super-property for all
properties denoting a
relationship of meaning

narrower The scope (meaning) of
one concept falls
completely within the
scope of another

Narrower concepts are
typically rendered as
children in a concept
hierarchy tree

broader A concept that is more
general in meaning than
another

Broader concepts are
typically rendered as
parents in a concept
hierarchy tree

related (weak semantics) A
concept with which there
is an associative semantic
relationship

Expresses the fact that two
concepts are in some way
related, and that the
relationship should not be
used to create a hierarchy

The class skos:CollectableProperty1 supports a generic mechanism by which collections

can be involved in semantic relationships (and other sorts of statement). However, the semantics of

1 Both SKOS elements and OpenCyc terms and relations are shown in courier font.

this mechanism are not explicit in the SKOS Guide. In fact, even though each and every relationship
in the SKOS Guide is informally defined, the lack of explicit formal descriptions can be considered a
problem for some applications. To perform reasoning tasks on the knowledge defined, thus avoiding
misinterpretation of terms across different thesauri, computational agents require machine-readable
descriptions (in addition to the human-readable versions of the information). These can be provided in
the form of explicit definitions in an ontology language such as OWL. Table 3 is a partial example on
the effort to map SKOS relations to formally defined predicates in the OpenCyc knowledge base.
Doing this, we are providing SKOS elements with a machine-consumption semantics that will
disambiguate any possible interpretation.

Table 3. A mapping of SKOS relations to OpenCyc predicates.

SKOS relation OpenCyc term Comments
semanticRelation Predicate Either a property of things (unary) or a

relationship holding between two or
more things (n-ary).

narrower genls

subSet

TaxonomicPredicate

Relates a given collection to those
collections that subsume it.

Relates a set or collection SUB to a set
or collection SUPER whenever the
extent (the set consisting of all of its
elements) of SUB is a subset of the
extent of SUPER.

Used to help specify the position of a
thing within one of the major
taxonomies or hierarchies in the
OpenCyc ontology.

broader inverse of genls Relates the subsumed collection to the
subsumer collection.

related not TaxonomicPredicate Any predicate not used to help specify
the position of a thing within one of the
taxonomies in OpenCyc.

3.2. An intermediate model to map SKOS terms to upper ontologies

The same concept can have different meanings across different thesauri. To both avoid
misinterpretations and foster automated reasoning on the terms of the thesauri, terms can be linked to
a general knowledge ontology such as OpenCyc. This should be made without the need of modifying
existing SKOS records for existing SKOS concept schemes. Figure 3 depicts how this can be done
through a non-invasive intermediate model. In the example, inspired by an interesting study on the
existence of different learning object conceptualizations by McGreal (2004), one concept in a
particular thesaurus, learning object (Polsani, 2002), is linked to specific meanings depending on its
different characterizations. The example assumes that a SKOS scheme has been created from the
original concepts in the thesaurus. On top of this information, and probably performed by other
persons (experts either in upper ontologies or in learning ontologies), a number of intermediate
records can be built to link the concept learning object to terms formally defined in an ontology.

In this particular case, and following the mentioned discussion by McGreal, one organization
could define learning object as “anything and everything” and thus link this concept to the term
oc:Thing in OpenCyc (the prefix “oc” indicates that it is an OpenCyc term, so its meaning is
unambiguously stated as a formal definition). In OpenCyc, oc:Thing is the top concept from which
all the others derive. On the other hand, if we consider learning objects to be digital entities, they
could be considered to be instances of oc:ComputerFileCopy, i.e. “information bearing things that
contain digitally coded information readable by a computer”. Although this definition is controversial
due to the dynamic nature of many learning objects, it serves the purpose of abstracting them as
elements available at a given URI. Finally, an organization maintaining a domain ontology on learning

terms (such as the Learning Technology group at the IE Research Unit, http://www.cc.uah.es/ie/)
could find useful to link the concept learning object to, for example, the term RLO in its ontology, RLO
standing for reusable learning object. The prefix IELearning in Figure 3 indicates the origin of the
ontology term.

Figure 3. An intermediate model allows mapping a SKOS concept to terms in different ontologies.

This approach, that consists of building an extra layer of links to concepts, will not be considered
complete until the reason why the skos:concept is being linked to a concept can be established.
That is to say: the conditions under which a particular link is considered operational (or the context
that defines those conditions) must be stated as part of the task of construction of the layer of links.
Returning to our previous example, the term back can be linked to different concepts in different sport
glossaries. Focusing on the different meanings that the term back has in two sports, football and
soccer, it becomes clear that at least two links can be created to connect back to terms belonging to
glossaries specific to each sport in particular. In soccer, for example, back is a synonym of defender
and is accordingly defined as “a player of the team that does not have possession of the ball”. On the
other hand, the meaning of back in a football glossary is “a running back, either the halfback or the
fullback”. Besides, the term back has a completely different meaning in human anatomy: “the rear part
of the human body, etc.”. Using an intermediate layer of links, as proposed, can help to link the term
back in a SKOS scheme to terms in different glossaries as shown in Figure 3, but the specific context
for which one meaning in particular (of the three available in the example) is operational is not yet
formally stated as part of the layer of links.

The knowledge base of Cyc, and consequently that of its open source version OpenCyc, is

divided into locally-consistent contexts called microtheories. The concept oc:Microtheory serves
to group a set of assertions (about time, topic, space, granularity, etc.) together that share some
common assumptions, defining “an atemporal abstract informational thing that represents a context”.
Consequently, the assertions in a oc:Microtheory constitute the content of that
oc:Microtheory. It is important to indicate that “all the assertions stated to be true in one
microtheory will also be true (by inference) in more specialized microtheories that depend on the
content of that microtheory”.

This notion of context can be considered to be the “missing link” between a SKOS concept and

the concepts to which it is linked to, and provides full sense (in semantic interoperability terms) to the

modeling of a layer of links. The information about the context allows to write assertions in the
following manner: “in this particular context, this concept in a SKOS scheme can be linked to a
concept in other glossaries or ontologies”, which is formally implemented by means of a ternary
predicate to be used in quadruplets including information about the context, the SKOS concept and
the linked concept in the following way:

(linkedTo oc:microtheory skos:concept oc:Thing)

The predicate linkedTo, specifically created for the purpose of this work, might be somewhat
related or derived from oc:ist, a predicate used to relate an assertion to the microtheories in which
that assertion is true. Figure 4 shows an updated version of the back modeling example where
microtheories have been incorporated.

Figure 4. Using microtheories to map SKOS concepts to specific definitions.

Another informative example is that of the term “abdomen”. This term has different meanings
depending on the animal which it is being applied to. This way, a human anatomy glossary might
contain the following definition: “the belly, the part of the trunk between thorax and the perineum”,
while for animals the definition of abdomen could be quite different. In hermit crabs, for example,
abdomen is the “region of the body furthest from the mouth”, although in ants, abdomen is “the third
section of the insect body (head, thorax, abdomen) which consists of the propodeum and metasoma”.
In this example, the information that was, for the previous example, represented in Figure 4, can be
formally expressed in the form of assertions like this:

(linkedTo Human-Microtheory abdomen HumanAnatomyGlossary:abdomen)

(linkedTo Animal-Crustacean-Crab-Microtheory abdomen CrabGlossary:abdomen)

(linkedTo Animal-Insect-Ant-Microtheory abdomen AntGlossary:abdomen)

To conclude, it is significant to mention that in a generic microtheory of animals (e.g. Animal-
Microtheory), that is to say, a context where we were dealing exclusively with concepts applicable
to animals, the two last assertions might be valid but the first one would never be. This is because
Human-Microtheory does not derive from the more general Animal-Microtheory, but Animal-

Crustacean-Crab-Microtheory Animal-Insect-Ant-Microtheory yet do derive: they are
both subsumed by Animal-Microtheory.

3.3. Linking terms in SKOS schemes to upper ontologies

To link terms in a SKOS scheme to terms in an upper ontology such as OpenCyc, a method
described elsewhere (Abran et al., n.d.) can be used. This process can be roughly described in four
steps:

1. Find one or several terms that subsume the category under consideration.
2. Check carefully that the mapping is consistent with the rest of the subsumers inside the upper

ontology.
3. Provide the appropriate predicates to characterize the new category.
4. Edit it in an ontology editor to come up with the final formal version.

This process has the advantage of allowing the individual work of an expert, whose outcomes can

then be contrasted with the work of others. The results of the process are much more efficient and
structured than engineering a new ontology, since the argumentation against or in favor of a given
concept or predicate is put in the formal context of an upper ontology.

An innovative approach, aimed at the automated population of knowledge bases from information
in the Web, is being explored by Shah et al. (2006). This approach, which continues the research
work by Matuszek et al. (2005) about the population of Cyc from the Web through a method to assist
in entering the knowledge, should be kept in mind as a reference to explore assisted methods to
create links from SKOS concepts to terms in upper ontologies.

4. Other SKOS categories

Apart from the semantic relationships category, the metadata elements in the SKOS vocabulary are
classified into other six categories: Conceptual elements, Labelling properties, Documentation
properties, Concept schemes, Meaningful collections of concepts and Subject indexing elements. This
section studies the semantic implications of the most relevant terms in those categories and
discusses their implications in the light of the definitions in the OpenCyc knowledge base.

4.1. Conceptual elements

Only one element forms the category here referred to as conceptual elements: the skos:Concept
class. Concept, defined in SKOS as “an abstract idea or notion; a unit of thought in SKOS”, allows to
assert that a particular resource is itself a concept. This skos:Concept compares to the universal
collection oc:Thing in Opencyc. oc:Thing is the collection which contains everything there is:
every thing in the Cyc ontology –every oc:Individual (of any kind) and every oc:Collection– is
an instance of oc:Thing. Similarly, every oc:Collection is a subcollection of oc:Thing.

4.2. Labelling properties

SKOS Core labellling properties (skos:prefLabel, skos:altLabel, skos:hiddenLabel,
skos:prefSymbol and skos:altSymbol) are aimed at helping to assign some sort of token to a
resource. As the tokens are “intended to be used to denote the resource in natural language
discourse and/or in representations intended for human consumption”, the semantic implications of
the elements in this category are few (if they can be considered useful at all). It becomes difficult to
imagine inferences based on the information provided by elements explicitly defined as intended for
human consumption.

Nevertheless, at least a weak inference can be deduced from the existence of labelling
information. When e.g. displaying information about a resource that includes more than one labelling
property, an inference mechanism can be programmed to always choose a preferred name over any
other kind of name. In this manner, the preferred label will be always chosen to refer to the concept in

detriment of other labels that could exist. This behaviour can be modeled by making use of the
predicate oc:preferredNameString. The existence of a triplet (oc:preferredNameString,
STRING, THING) states that the STRING is a preferred name to use when referring to THING. Similar
inferences can be programmed for the other labelling properties (e.g. to perform multilingual or
symbolic labelling) even though their usefulness is arguable.

4.3. Documentation properties

The hierarchy of documentation properties in SKOS (skos:note, skos:definition,
skos:scopeNote, skos:example, skos:historyNote, skos:editorialNote,
skos:changeNote) is composed of seven properties that can be used “to add human-readable
documentation to the description of a concept”. Used only to label a concept, the usefulness of these
properties can be as arguable as the information about labelling properties. However, the so-called
’recommended usage patterns’ for the SKOS Core documentation provide room for more complex
modeling. There are three recommended usage patterns:

- Documentation as an RDF Literal: the simplest pattern for using the SKOS Core documentation

properties. In this pattern, the property value is represented as an RDF literal.
- Documentation as a Related Resource Description: the documentation is structured as a related

resource description, what allows to represent complex documentation structures.
- Documentation as a Document Reference: allows to refer to documentation that is itself a

document, via the URI of that document.

From the point of view of introducing some kind of inference mechanisms, the more interesting pattern
is the documentation as a related resource description one. This pattern allows to include information
about the properties of the documentation itself, such as the creator(s) of the documentation, dates
related to it, or its intended audience, among others. In an upper ontology, several predicates can be
found to represent the same or very similar knowledge. For example, the predicate oc:createdBy
relates something to its creator(s). In this way, any triplet (oc:createdBy THING AGENT) means
that AGENT is “one of the people, corporations, publishers, etc., responsible for the invention or
bringing into being of THING”. Similarly, date information can be modeled through the use of many
different predicates that provide support for information related to a date, as for example:

- oc:myCreationDate, a binary predicate to be used in triplets (oc:myCreationDate
CONSTANT DATE), informs that the atomic term that is CONSTANT was created at DATE.
Depending on the precision of the bookkeeping information stored for CONSTANT, DATE may
have varying degrees of accuracy.

- oc:dateOfPublication-CW, a binary predicate whose meaning for a triplet
(oc:dateOfPublication-CW CW DATE) is that the CW (which stands for Conceptual Work)
was published on DATE.

But in general, the highest level predicate of the hierarchy of properties that might help to model this
information is oc:ComplexTemporalPredicate, a specialization of
oc:BinaryTemporalRelationPredicate, whose instances relate temporal things (instances of
oc:TemporalThing). A complex temporal predicate might be used to relate “complicated temporal
objects such as events, tangible objects, and proper time intervals”.

4.4. Concept schemes

After what is stated in the SKOS Core Guide, a concept can be defined either in relation to other
concepts (as part of an internally coherent concept scheme), or as a stand-alone resource. The SKOS
Guide defines a concept scheme as “a set of concepts, optionally including statements about
semantic relationships between those concepts”, and provides the class skos:ConceptScheme for
authors to assert “that a resource is a concept”. However, this definition of concept scheme is very
similar to the earlier mentioned definition by Gruber (1993): “an explicit specification of a

conceptualization”. Consequently, providing information for the skos:ConceptScheme metadata
element may be used to assert that a particular resource is itself an ontology. Using the
skos:hasTopConcept, ontologies can be linked to their top level concepts in the following way:

(skos:hasTopConcept OpenCyc oc:Thing)

It is also possible to assert that a concept belongs to a particular concept scheme, by using the
skos:inScheme property. For example:

(skos:inScheme BillGates OpenCyc)

This kind of assertion can be useful to situate terms when several ontologies are being used, for
example whenever there is a need for working with multiple domains and concepts (and/or
relationships) cross-cut domains.

4.5. Meaningful collections of concepts

This category of metadata elements allows to define meaningful groupings of concepts which are
called collections. To assert labelled collections, the vaguest form of meaningful collection of concepts
in SKOS, it is just necessary to use the skos:Collection class to set the collection name and the
skos:member property to relate that collection to the concepts which belong to it. No other meaning,
apart from membership, can be inferred from such declarations. The following RDF code is an
example of the definition of a labelled collection of Italian opera composers:

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:skos="http://www.w3.org/2004/02/skos/core#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <skos:Collection>
 <rdfs:label>italian opera composers</rdfs:label>
 <skos:member rdf:resource="http://www.example.com/concepts#verdi"/>
 <skos:member rdf:resource="http://www.example.com/concepts#mascagni"/>
 <skos:member rdf:resource="http://www.example.com/concepts#bellini"/>
 <skos:member rdf:resource="http://www.example.com/concepts#puccini"/>
 </skos:Collection>

 <skos:Concept rdf:about="http://www.example.com/concepts#Verdi">
 <skos:prefLabel>Giusseppe Verdi</skos:prefLabel>
 </skos:Concept>

 <skos:Concept rdf:about="http://www.example.com/concepts#mascagni">
 <skos:prefLabel>Pietro Mascagni</skos:prefLabel>
 </skos:Concept>

 <skos:Concept rdf:about="http://www.example.com/concepts#bellini">
 <skos:prefLabel>Vincenzo Bellini</skos:prefLabel>
 </skos:Concept>

 <skos:Concept rdf:about="http://www.example.com/concepts#puccini">
 <skos:prefLabel>Giacomo Puccini</skos:prefLabel>
 </skos:Concept>

</rdf:RDF>

The class skos:Collection can be mapped to the concept oc:SetOrCollection, a term in

OpenCyc describing instances “intrinsically associated with an intensional criterion for membership,
which is a property or group of properties possessed by all of its elements”. At the same time, the
skos:member property can be linked to oc:elementOf, a predicate that in OpenCyc relates a
oc:Thing and a oc:SetOrCollection meaning that the oc:Thing is an element of the given
mathematical set or collection. The class skos:OrderedCollection, a subclass of
skos:Collection, defines an ordered collection of concepts whose members are linked from a
skos:memberList property to the instance of the collection. In ordered collections a membership
rule applies, implemented through a logical function named elementOfList. The term
oc:TotallyOrderedCollection in OpenCyc, “a collection whose instances are conventionally
regarded as being ordered by some relation”, provides the formal definition for the same concept and
can thus be linked to it by using the method described earlier. This kind of modeling is richer as it
allows to link the relationship to the kind of ordering via the oc:orderingRelation predicate, which
permits, for example, to implement a routine that looks for all the collections that follow the same
sorting criteria.

Table 4. Mapping SKOS collection concepts to terms in OpenCyc.

SKOS concept Definition OpenCyc concept
Labellled
collection

A meaningful collection of
concepts

oc:SetOrCollection

Ordered collection An ordered collection of
concepts, where both the
grouping and the ordering are
meaningful

oc:TotallyOrderedCollection

member A member of a collection oc:elementOf

In SKOS schemes collections can also be nested, but this capacity is a mere way of arranging
their declarations and, consequently, has not semantic implications. Table 4 summarizes the previous
discussion about collections.

4.6. Subject indexing properties

The properties skos:subject and skos:primarySubject in the SKOS Core can be both used
for subject indexing of information resources on the Web. Also the inverse properties
skos:isSubjectOf and skos:isPrimarySubjectOf can be used to make the same assertions
but in the contrary direction. The difference between skos:subject and skos:primarySubject
lies in the fact that one information resource may have more than one skos:subject, only one (or
none) of them being the skos:primarySubject.

Even though the subject indexing properties can be used for formal description of terms, the
scope of subject in SKOS is much broader, and includes any relation to very diverse resources. In
ontology based representations, these properties could be mapped to (almost) any binary predicate.
Obviously, such an open mapping would not provide much information, but in OpenCyc the predicate
oc:subjectOfInfo, provided to link any oc:Thing to some oc:InformationStores, fits well
with indexing information and can be used as concept of reference to delimit the scope of these
properties.

5. Conclusions and further research directions

SKOS has proven a powerful yet simple vehicle for presenting and sharing terminology, but it does
not provide any form of computational semantics. The effort described in this paper is the first step to
the description of a complete non-intrusive model oriented to foster semantic interoperability among
thesauri using SKOS schemas. The main purpose is to provide SKOS schemes with computational
semantics, as in the current situation, the representation of a concept scheme as an RDF graph can
not be used as the basis for performing automated tasks associated to the knowledge represented in

the scheme. Current efforts in the field insist in the construction of inter-thesauri mappings but do not
focus on semantic interoperability. Herein, the lack of a computational semantics in the SKOS Core,
has been approached from two directions: proposing a set of precise definitions for the terms in the
SKOS vocabulary through mapping them to terms in an upper ontology, and defining an intermediate
model to map the concepts in a SKOS scheme to terms in an upper ontology. In both cases,
OpenCyc has been used as a case study.

Regarding the use of upper ontology terms from OpenCyc, the opinion of other experts will be
required in order to validate the links between the SKOS elements and the corresponding OpenCyc
classes and properties. The authors consider these opinions very valuable and thus are open to
positive feedback on the precision and usefulness of the definitions included. Future work should
gather feedback from ontology experts and other research units working in similar projects qith the
objective of publishing a working draft describing the problems found, the lessons learned, and
proposing future actions on this topic.

Acknowledgments

This work is supported by the LUISA EU project (FP6-027149) and also receives support from the
University of Alcalá (project UAH-PI2005-070) and the Spanish Ministry of Education (project
TSI2004-21263-E).

References

Abran, A., Cuadrado, J.J., Garcia-Barriocanal, E., Mendes, O., Sanchez-Alonso, S. and Sicilia, M.A.
(n.d.) Engineering the ontology for the Software Engineering Body of Knowledge: Issues and
Techniques, in Ontologies for software engineering, Springer Verlag (in press)

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D. and Patel-Schneider, P.F. (2003). The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press.

Corazzon, R. (n.d.). Ontology. A resource guide for philosophers. Retrieved November 1, 2005, from
http://www.formalontology.it

Doan, A., Noy, N. and Haleevy, A. (2004). Introduction to the special issue on semantic integration.
SIGMOD Record, 33 (4).

Euzenat, J. Scharffe, F., Serafin, L. (coord.) (2006) Deliverable D2.2.6: Specification of the delivery
alignment format, version 1.1. Knowledge Web: Realizing the Semantic Web. Project KWEB EU-IST-
2004-507482. Retrieved March 30 from
http://www.inrialpes.fr/exmo/cooperation/kweb/heterogeneity/deli/kweb-226.pdf

Doerr, M. (2001). Semantic problems of thesaurus mapping. Journal of Digital Information, 1(8).

Gruber, T. R. (1993). A translation approach to portable ontologies. Knowledge Acquisition. 5(2) 199–
220.

Lenat, D. B. (1995). Cyc: A Large-Scale Investment in Knowledge Infrastructure. Communications of
the ACM, 38(11) 33–38.

Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J. Schneider, D., Shah, P. and Lenat, D. (2005).
Searching for Common Sense: Populating Cyc from the Web. In Proceedings of the Twentieth
National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania.

McGreal, R. (2004). Learning Objects: A Practical definition. International Journal of Instructional
Technology and Distance Learning 1(9).

Miles, A. and Brickley, D. (editors) (2005). SKOS Core Guide: W3C Working Draft 2 November 2005.
Retrieved March 20, 2006, from: http://www.w3.org/TR/swbp-skos-core-guide/

Miles, A. and Brickley, D. (editors) (2005). SKOS Mapping Vocabulary Specification. Retrieved March
20, 2006, from: http://www.w3.org/2004/02/skos/mapping/spec/

Miles, A. and Brickley, D. (editors) (2005). SKOS Core Vocabulary Specification: W3C Working Draft
2 November 2005. Retrieved March 20, 2006, from: http://www.w3.org/TR/swbp-skos-core-spec/

Miles, A. and Matthews, B. (n.d.) Inter-Thesaurus Mapping draft version 0.1., deliverable number 8.4.
of EU Project number: IST-2001-34732, “Semantic Web Advanced Development for Europe” (SWAD-
Europe). Retrieved March 20, 2006, from: http://www.w3c.rl.ac.uk/SWAD/deliverables/8.4.html

Polsani, P.R. (2002). The Use and Abuse of Reusable Learning Objects. Journal of Digital
Information, 3 (4).

Shah, P., Schneider, D., Matuszek, C., Kahlert, R.C., Aldag, B., Baxter, D., Cabral, J., Witbrock, M.
and Curtis J. (2006). Automated Population of Cyc: Extracting Information about Named-entities from
the Web. In Proceedings of the 2006 FLAIRS Conference, Melbourne, FL.

Sicilia, M.A., Lytras, M., Rodríguez, E. and García-Barriocanal, E. (2006). Integrating descriptions of
knowledge management learning activities into large ontological structures: A case study. Data &
Knowledge Engineering, 57(2) 111-121.

