
Design by Contract-Based Selection and Composition of

Learning Objects

Salvador Sánchez-Alonso1, Miguel-Ángel Sicilia1, José-Manuel López-Cobo2, Sinuhé
Arroyo 1

1 University of Alcalá, Computer Science Department, Madrid, Spain
{salvador.sanchez, msicilia}@uah.es

sinuhe.arroyo@alu.uah.es
2 iSOCO, Madrid, Spain

ozelin@isoco.com

Abstract. Selection and composition of learning objects are two essential activities in
automated approaches to Web-based learning. Such activities require high-quality
metadata records that are not only conforming to current specifications and standards,
but that provide clear system-oriented run-time semantics that support automated
decision processes. In this paper, the Design by Contract paradigm is described as a
method to formally specify and drive selection and composition of contents aimed at
concrete learning requirements. In addition, an architectural mapping for such
approach to Web Service technology is described, which provides a flexible
integration mechanism in a context of heterogeneous and dynamic learning content-
providers.

1 Introduction

Learning Management Systems (LMS) are a concrete category of Web-Based Information

Systems aimed at delivering diverse kinds of learning experiences. A number of evolving
specifications and standards for learning contents have fostered consistency in format and
description of Web learning contents [1], but they still lack a level of semantic specification
enough to enable consistent runtime automated semantics. This has lead to loose metadata
creation practices resulting in learning content that doesn’t meet the required completeness
[10] and consistency [7] to serve as the basis for common automated LMS-initiated
behaviors –like selection and composition. In addition, the roles of relationships are not free
of ambiguity [3], which seriously hampers the possibilities of consistent composition.

Selection of learning objects requires complete enough metadata records to allow an
LMS to decide for inclusion of a given object in the ongoing composition. In addition, the
composition itself requires compatibility of the metadata records of the aggregate and the
parts [12], so that some properties are “propagated” between them, resembling well-known
properties of aggregations in object-oriented modeling. From a technical point of view,
learning object repositories can be accessed through Web services in order to provide them
with the essential infrastructure to be effectively reused [2] [17]. This approach provides
learning objects with a number of benefits, as expanded searching capabilities, better
management of usage fees, accurate access and usage statistics and so on. But before

publishing Web service-based learning object repositories, a common way of specifying
what a final user can expect from a given learning object and the conditions under which it
can be used is needed. Learning object Design by Contract [15], a notation based on the
Learning Object Metadata specification [5] and enhanced with richer semantics, can be
used for that purpose. In previous works, design by contract [9] has been applied to the
description of machine-understandable learning object metadata in the form of learning
object contracts. Learning object contracts essentially allow the specification of a set of
preconditions (circumstances under which the object can be used) and post-conditions
(learner expected outcomes) for each learning object, which can also be used to clearly
specify relationships between learning objects.

In the rest of this paper, the use of learning object-contracts to drive selection and
composition processes is described, focusing on the interpretation of aggregations as the
main compositional relationship. In addition, a concrete, flexible architecture based on Web
Services is sketched to illustrate the actual behavior of contract-based composition services.
Section 2 describes learning object contracts as a content design method for learning
objects. Section 3 focuses on the specifics of the aggregation relationship, and on its
consequences in the process of learning object composition. In Section 4, a Web Service-
based architecture is used to illustrate the behavior of contract-based composition services.
Finally, conclusions and future research directions are provided in Section 5.

2 Specifying Learning Object Contracts

The concept of ‘learning object’ represents an attempt to enhance the design of Web-based
educational contents, focusing on their reusability in diverse learning contexts [14]. The key
to reusability is the provision of metadata in standardized formats for fine-grained content
items. But reusability requires precisely specified metadata records, especially if “machine-
understandability” is required to build software modules that automatically retrieve and
combine learning objects to form higher-level units of instruction. Unfortunately, current
learning object metadata specifications do not address this and other important issues [3]. In
consequence, previous work [11] [12] [15] has proposed design by contract –a technique
borrowed from the object-oriented paradigm– as a way of formalizing learning object
metadata records. A learning object contract can be expressed as follows:

rlo <URI>

 require <list_of_preconditions>

 ensure <list_of_postconditions>

provided that both pre- and post-conditions are expressed through assertions according to a
syntax like the following:

[level] preconditionId.element <relationallOperator> requestedValue

postconditionId.element <relationalOperator> value [θ]

Where pre- and post-condition identifiers correspond to either the learner (lrn), the

learning context (ctx), or the system where the learning object is due to be executed (sys);
element maps to a metadata element (e.g. one of those defined in LOM); and θ refers to a
certain degree of credibility. This level is a way to express the fact that some learning

objects may be credited to be “more appropriate” than others, due to authoritative revisions
or evaluation processes (like, for example, the peer-review assessments being carried out in
the MERLOT learning object repository1). Finally, level indicates the strength of the
precondition (mandatory, recommended or optional). The following example uses the just
described syntax to describe a metadata instance corresponding to an introductory lesson on
the use of the genitive case in English. It is intended for an Italian speaking audience, and
includes the time of work required to complete the lesson (Typical Learning Time in LOM):

 rlo <http://.../GenitiveCaseForItalians>
 require
 ctx.language = en ; ctx.time = 2h ; lrn.language = it

Regarding postconditions, learner knowledge is obviously the principal outcome of

learning activities, but other products may also be considered. For example, social
relationships among learners are an important issue according to sound theories of learning
[8], and learning resources that foster social activities may be considered to strength those
relationships. Nevertheless, most preconditions will refer to expected learning outcomes,
showing absolute or relative outcomes on the learner side. Relative outcomes compare to
the learner’s previous knowledge –denoted by a ‘–1’ value–, while absolute outcomes can
only be noted provided that a taxonomy for the specific knowledge domain has been
defined. Following our previous example, we can have a RLO ensuring that the learner’s
knowledge will grow (relative outcome).

 rlo <http://.../GenitiveCaseForItalians>
 ...
 ensure
 lrn.knows(genitive_case) > lrn.knows(-1)(genitive_case)

Learning object contracts can be used as a machine-understandable source of information
for selection and composition, since they state requirements and outcomes in a semantically
interpretable way. Nevertheless, not only self-descriptions but also relationships influence
selection and composition decisions. Concretely, aggregations are critical in the
interpretation of composition, as described in the following section.

3 Learning Object Aggregation and its Role in Composition

Aggregation is on the very nature of reusable learning resources: most of them are
composed of others. Composition implies, among other commitments that we will examine
below, that the contract of a learning object that is an aggregate of others has necessarily to
be affected by the contracts of its parts. Consider for example a LOM-conformant learning
object whose 1.8:AggregationLevel is equal to 3 (course). Let’s imagine that it is written in
Italian. As it is a composition of lower-level objects, the language of its parts will have to be
Italian as well. In cases like this, the contracts of the parts must conform to what the
aggregate contact states. This way, the representation of aggregation relationships in
metadata records may entail dependencies on information in other objects metadata records.

An important question is whether the parts should conform to the aggregate contract or
aggregate metadata value items should be inferred from its constituent parts. As a matter of

1 http://www.merlot.org

fact, it is a two-way process. Before the aggregate “physically” exists, the “composer agent”
relies on a few directions on what the target system expects from the parts. These directions
are formalized into the shape of a contract, thus creating a learning object contract blueprint
specification that we call the archetype. This is step one. Then, an automated system looks
for tentative parts (candidates) in learning object repositories, by focusing the search on the
needs and restrictions expressed in the archetype. As the result of this search, a list of
candidate learning objects is made up. The best candidate in the list –according to selected
criteria– will be the one that will integrate the final aggregate.

Another important issue to consider is whether information on aggregation should be set
in a learning object metadata record or not. Reusability asks for the components of an
aggregation to be built without any knowledge about it in order to facilitate its future reuse, so it
should be the aggregate responsibility to compose all the parts and to keep the track on them.
We suggest stating this information only in the aggregate by using LOM item hasPart, thus
avoiding the use of isPartOf in the parts. This approach forces systems to check the related
resources to a given one that is composed by others, but preserves the individual reusability
levels of simple educational resources. Besides all the mentioned issues, the fact that
aggregation relationships entail runtime commitments that affect the objects that participate
in the relationship has also to be considered. The most important of these commitments is
availability, which means that the referenced resource has to be available whenever the
current learning object is used or delivered. This can be done in two different forms: a) the
referenced object being effectively available, or b) the learner providing evidence of a level
of knowledge greater or equal than the stated in the learning outcomes published in the
contract of A. Apart from availability, other commitments are propagation (some properties
propagate from the aggregate to the parts), acyclicness (chains of aggregate links must not
form cycles) or reference validity, a weak form of availability [13].

In the following example, a learning object MyLO that displays a Flash-animated
example of the Quicksort algorithm, is in the list of candidates returned by the automated
search engine, and it is consequently under consideration by a composer agent in order to
integrate it in a Java course object:

rlo <http://... /MyLO>
 require
 mandatory sys.browser >= V5_browser
 mandatory sys.requirement = FlashPlugIn
 mandatory ctx.cost = true ; recommended ctx.time = 0.5h
 ensure
 lrn.knows(qSort)[90]

The mentioned commitments affect the given object in the following way. Propagation
requires the aggregate learning time to remain unknown until the total number of pieces is
assembled, since it is calculated from them. Availability asks for MyLO to be publicly
accessible whenever the aggregate is being delivered or used, but also for its usage fee to be
paid. As MyLO is not composed by other learning objects (it is a leaf in the aggregation
tree), acyclicness is guaranteed given that all the potential cycles would end here. So, if
MyLO was finally chosen, the aggregate contract would be affected by the data in MyLO
metadata record. The aggregate contract could be:

rlo <http://... /AgentGeneratedAggregate>
 require

 mandatory sys.browser > V5_browser
 recommended ctx.time = 10h; mandatory ctx.cost = true
 mandatory ctx.hasPart = "MyLO” ...

 ensure
 lrn.knows(qSort) [90]

As this example shows, MyLO design is not constrained by pre- or post- conditions in
the aggregates it would be part of. It is the responsibility of the author of the aggregate to
check the consistency of the parts with the aggregate contract, and to make use of some
features to calculate the final values to be set in some assertions (as the learning time in our
example). The new precondition hasPart appears after choosing MyLO and as a
consequence of the relationship.

4 Example Architecture and Processing

In our model, contracts are the basis for searching and retrieving learning objects from a
repository. We define Learning Web Services (LWSs) as Internet services that use a
standard SOAP communication interface to expose learning objects that are described by
metadata in the form of contracts. The LWS SOAP interface provides the clients with a)
discovery of learning objects, based on their contracts, b) download of learning objects,
using learning object packaging technologies [6], and c) learning object metadata retrieval.
In what follows, a concrete design of LWS is described as a general-purpose architecture
fulfilling the requirements of contract-based selection and composition. A declarative XL-
like syntax [4] is used for the sake of obtaining a high-level architectural description.

When searching for learning objects, the query operation encodes a search request as a
learning object contract archetype that will be in turn compared to the contracts of the RLOs
stored in the repositories. Going back to our first example, let’s suppose that an Italian-
speaking learner is following a course of English as a foreign language; learning resources
that are not locally available are required for the full course. As a lesson on the genitive
case is needed, the LMS will need to locate a learning resource that fits to the current
learner profile and system settings. A contract archetype will then be created from the
course needs (which will form the postconditions in the contract) and limitations about the
system and the learning context (preconditions in the contract), e.g.:

rlo <CONTRACT_ARCHETYPE>

 require
 sys.browser <= v5_browser; ctx.time < 3h ; lrn.language = it
 ensure
 lrn.knows(genitive_case) [80]

This contract archetype asks for a RLO providing the learner with a knowledge on the
genitive case over 80 percent confident. It limits the valid objects to those that can be
displayed in a version 5 browser or lower, with a duration shorter than 3 hours, and
intended to Italian-speaking audiences. A composer service can be used to provide the full
selection and composition request through an interface like the following:

service <http://../Composer>
 history;
 let compositionRules rules;
 context let archetype arch;
 invariant archetype validates as contract;
 context let learningObject rlo;
 operation <http://../Composer>::compose
 precondition $input validates as contract;
 postcondition $output validates as learningObject;

 postcondition conforms($input, $output);
 body ...
 <<divide in ci>>

 ci,rules -> <http://../ContractSearcher>::lookFor⇒⇒⇒⇒rloi
 <<combine rloi>>
 endbody
 endoperation
endservice

The above XL-like syntax specifies a type called archetype for the arch context variable
of the service, which is instantiated in a per-conversation basis. The rlo variable represents
the ongoing composition. The type compositionRules is intended to reflect the global
knowledge of the service regarding the constraints on composition required as those
described in the previous examples. Such declarative specification can be easily expressed
in XML, with syntaxes similar to those of RuleML2. The history clause entails the automatic
recording of conversations; this is useful to cache repeating requests. The combination of
RLOs entails the definition of a new aggregated learning object with metadata reflecting the
contracts of the parts. In this model, not only RLOs can be retrieved, but also their
contracts. Contract retrieval is particularly useful when choosing among RLOs offering
similar outcomes, since the assessment criteria is the contract. Repositories of RLOs and
contracts can be accessed through separate services with a minimal interface like the
following:

service <http://../ContractRepository>
 operation <http://../ContractRepository>::query
 precondition $input validates as contract;
 postcondition conforms($input, $output); ...
 endoperation
endservice

service <http://../RLORepository>
 operation <http://../RLORepository>::get
 precondition $input validates as LOMid;
 postcondition $output validates as learningObject; ...
 endoperation
endservice

A software agent working on behalf of the end-user application (called Proxy agent)

interacts with another software service called Composer. Composer takes an archetype
contract from the expressed needs of the learner and will hand parts of it (ci) over to
searching services conforming to ContractSearcher. This intermediation allows for quality
assessments and other criteria to be located on searchers, so that the repositories are simply
persistent storages. ContractSearchers may also implement a subset of combination rules not
included in Composer, allowing for extensibility of the approach to new sub-schemas. The
requirements for searchers is that they should be able to provide an ordered collection of
RLOs conforming to the given (sub-)contract, so that results are “explainable” according to
the ordering criteria of searchers.

service <http://../ContractSearcher>
 let contractRepositoryCollection sources;
 let compositionRules rules;
 operation <http://../ContractSearcher>::lookFor
 precondition $input$ validates as contract, compositionRules;
 postcondition conforms($input[contract], $output);
 body

 $input$[contract]→ <http://../ContractRepository>::query → loi

2 http://www.ruleml.org/

 <<sort loi>> ...
 endbody
 endoperation
endservice

The communications between the Composer and the searchers is typically asynchronous,
resembling Request-for-Quote business processes, while queries to repositories typically
require a synchronous, immediate response. The decomposition just described carries out
the essential composition and selection tasks. Additional supporting services can be added
to deal with repository discovery and assessment. The complex conditions contracts impose
on LO metadata require some form of logics-based support if maximum flexibility is
desired. The Web Services Modeling Ontology framework3 is an ideal candidate for such
kind of effort. WSMO could be used to provide the description for lookFor implementation.
An example fragment of an ontology definition in WSML could be:

concept learningObject
 nonFunctionalProperties

dc#description hasValue "Any digital entity that may be used for learning,
education or training"

 endNonFunctionalProperties
 aggregationLevel impliesType (1 1) aggregationLevel
 languages impliesType humanLanguage
 isClassifiedInto impliesType classification
 hasRights impliesType rights
 hasTechnicalRequirements impliesType technicalRequirement
 locationURI impliesType _iri
 hasEducational impliesType (1 1) educational
 identifier impliesType (1 1) learningIdentifier
 title impliesType _string
 structure impliesType (1 1) structure
 hasRelations impliesType relationship

concept educational
 nonFunctionalProperties
 dc#description hasValue "The Educational aspects of the Learning Object"
 endNonFunctionalProperties
 descriptionOfEducational impliesType _string
 interactivityType impliesType interactivityType
 learningResourceType impliesType learningResourceType
 hasInteractivityLevel impliesType interactivityLevel
 hasDifficulty impliesType difficulty
 contextEducational impliesType contextEducational
 intendedEndUserRole impliesType intendedEndUserRole

concept orCompositeTechnicalRequirement
 nonFunctionalProperties

dc#description hasValue "Define the possibilities of a choice for a
technical Requirement of a LO"

 endNonFunctionalProperties
 minimumVersionOfTR impliesType _string
 maximumVersionOfTR impliesType _string
 typeOfRequirement impliesType _string
 nameOfRequirement impliesType _string

concept technicalRequirement
 nonFunctionalProperties
 dc#description hasValue "A Technical Requirement that a LO has to comply"
 endNonFunctionalProperties
 installationRemarksOfTR impliesType (0 1) _string
 formatOfTR impliesType (0 1) _string
 sizeOfTR impliesType (0 1) _string
 locationOfTR impliesType (0 1) _iri
 durationOfTR impliesType (0 1) _duration
 hasOrCompositeRequirements impliesType orCompositeTechnicalRequirement

3 http://www.wsmo.org

concept learningIdentifier
 nonFunctionalProperties
 dc#description hasValue "An unique and unambigous identifier for a LO"
 endNonFunctionalProperties
 entryCatalog impliesType _string
 catalogIdentifier impliesType _string

concept resourceInRelation
 nonFunctionalProperties

dc#description hasValue "Describes the Resource (LO) which is related with
other LO"

 endNonFunctionalProperties
 descriptionOfResource impliesType _string
 identifiedResource impliesType learningIdentifier

concept kindOfRelation subConceptOf _string
 nonFunctionalProperties
 dc#description hasValue "Defines one kind of Relation between two LO"
 endNonFunctionalProperties

concept relationship
 nonFunctionalProperties

dc#description hasValue "Describes one relationship between the LO owner and
other LO"

 endNonFunctionalProperties
 kindOfRelationship impliesType kindOfRelation
 resourceInRelationship impliesType resourceInRelation

concept structure subConceptOf _string
 nonFunctionalProperties
 dc#description hasValue "Defines the structure in which is composed a LO"
 endNonFunctionalProperties

concept aggregationLevel subConceptOf _integer
 nonFunctionalProperties
 dc#description hasValue "Describes the granularity of the LO"
 endNonFunctionalProperties

Such shared formal definitions could be used to specify Web Services that provide a
concrete kind of learning objects, as illustrated by the following WSML fragment that
describes the capability to provide LO with concrete language, aggregation level and
content classified according to certain taxonomy elements:

webservice _”http://www.uah.es/ontologies/ws.wsml”

nonFunctionalProperties

dc#title hasValue "Algorithm for Internet Applications Learning Object Web Service"
dc#description hasValue "Web service for access the content of a Learning Object on
Algorithms and purchase it"

endNonFunctionalProperties

importedOntologies _”http:://www.wsmo.org/ontologies/purchase”

capability _#

 precondition

 axiom _#
 nonFunctionalProperties
 dc#description hasValue "The input to the Web Service has to be a user with an
intention to select a Learning Object"
 endNonFunctionalProperties

definedBy

 ?Buyer memberOf po#buyer.

postcondition

 axiom _#
 nonFunctionalProperties
 dc#description hasValue "the output of the service is a Learning Object about
Internet Algorithms."

 endNonFunctionalProperties
definedBy

?LO memberOf lom4WSMO#learningObject[
 isClassifiedInto hasValues {?Classifications},
 languages hasValues {lom4WSMO:englishUK},
 aggregationLevel hasValue 3
 identifier hasValue ?Identifier,
 title hasValue "Algorithms for Internet Applications (WS2001/02, lecture 14)"] and
?Identifier memberOf learningIdentifier[
 entryCatalog hasValue lom4WSMO#ARIADNE,
 catalogIdentifier hasValue "V3VIROR_v_3.1_nr_22"] and
?Classifications memberOf lom4WSMO#classification[
 purpose hasValue lom4WSMO#discipline,
 taxonPath hasValues {?Paths}] and
?Paths memberOf lom4WSMO#taxonPath[
 hasSourceTaxonPath hasValue lom4WSMO#ARIADNE,
 hasTaxon? hasValues {
 idTaxon hasValue "000000001",
 valueTaxon hasValue "Exact, Natural and Engineering Sciences",
 fatherOfTaxons hasValues {
 idTaxon hasValue "000000002",
 valueTaxon hasValue "Informatics & Information Processing",
 fatherOfTaxons hasValues {
 idTaxon hasValue "000000003",
 valueTaxon hasValue "General"}},
 idTaxon hasValue "000000004",
 valueTaxon hasValue "Internet Algorithms”}].

effect

 axiom _#
 nonFunctionalProperties
 dc#description hasValue "there shall be a trade for the Learning Object of the

postcondition"
 endNonFunctionalProperties
definedBy

 ?someTrade memberOf po#trade[
po#items hasValues {?LO},

 Po#payment hasValue ?acceptedPayment]
 and ?acceptedPayment memberOf po#creditCard.

In order to match the user desire with the Web Service capability, that’s the access to the
learning object described in it, we need to define the desired learning facility required by
the user by means of a WSMO Goal, as in the WSML fragment written below.

goal _”http://www.uah.es/ontologies/goals/goalLO.wsml”

nonFunctionalProperties

dc#title hasValue "Searching for a Learning Object about Internet Algorithms"
dc#description hasValue "Express the goal of buying a Learning Object for learn

Internet Algorithms"
endNonFunctionalProperties

importedOntologies {_”http://www.uah.es/ontologies/lom4WSMO”}

postcondition

axiom purchasingLearningObject
nonFunctionalProperties

dc#description hasValue "This goal expresses the general desire of purchasing a
Learning Object"
endNonFunctionalProperties

definedBy

exists ?LearningObject, ?Classification, ?Paths
(
?LearningObject memberOf lom4WSMO#learningObject[
 lom4WSMO#isClasssifiedInto hasValue Classification?] and
?Classifications memberOf lom4WSMO#classification[
 taxonPath hasValues {?Paths}] and
?Paths memberOf lom4WSMO#taxonPath[

hasSourceTaxonPath hasValue lom4WSMO:ARIADNE,
 hasTaxon? hasValues {valueTaxon hasValue "Internet Algorithms"}]

).

In consequence, both the decomposition of selection and composition in sub-activities and

the expression of contracts in terms of formal ontology can be interpreted in terms of a
contract-based approach in which goals and Web services logically match to serve the user
with the desired set of Learning Objects required by his learning needs.

5 Conclusions

Learning object contracts can be used to drive the process of selection and composition
of learning resources in a consistent way. Pre- and post-conditions can be used as search
criteria, and aggregation relationships can be used to derive aggregate metadata. Such
processes can be properly devised following a service-oriented approach, as illustrated by
the high-level specification provided. Future work should detail the influence of each
concrete metadata element in such processes, following the lines of recent work [16], and
the process itself (or a set of alternative configurable processes) should be specified to
guarantee a standardized, common and predictable behaviour. It should also deal with
implementing intelligent agents to carry out the selection and composition processes,
capable of changing their goals at runtime by introducing a more interactive approach.

Acknowledgements

The research reported in this chapter is funded by the European Commission 6th
Framework (IST) Project LUISA (FP6-027149).

References

1. Anido, L. E., Fernández, M. J., Caeiro, M., Santos, J. M., Rodríguez, J. S., Llamas, M. Educational
metadata and brokerage for learning resources. Computers & Education, 38(4), 351 – 374 (2002)

2. Blackmon, W.H., Rehak, D. Customized Learning: A Web Services Approach. In: Proceedings of
Ed-Media ‘03, (2003)

3. Farance, F.: IEEE LOM Standard Not Yet Ready For ‘Prime Time. IEEE LTTF Learning
Technology Newsletter, 5(1) (2003)

4. Florescu, D., Grünhagen, A., Kossmann, D. XL: An XML Programming Language for Web
Service Specification and Composition. In Proceedings of the International World Wide Web

Conference, 7-11 (2002)
5. IEEE LTSC. Learning Object Metadata (LOM). IEEE 1484.12.1 (2002)
6. IMS Global Learning Consortium, Content Packaging Final Specification. (2001)
7. Kabel, S., Hoog, R., Wielinga, B.J.: Consistency in Indexing Learning Objects: an Empirical

Investigation. In: Proceedings of the Learning Objects 2003 Symposium, 26-31 (2003)
8. Lave, J., Wenger, E. Situated Learning: Legitimate Peripheral Participation. Cambridge, UK:

Cambridge University Press (1990)
9. Meyer B.: Object Oriented Software Construction, Prentice Hall, 331-410 (1997)

10. Pagés, C., Sicilia, M.A., García, E., Martínez, J.J., Gutiérrez, J.M.: On the Evaluation of
Completeness of Learning Object Metadata in Open Repositories. In: Proceedings of 2nd Int. Conf.
on Multimedia, Information & Communication Technologies in Education, 1760-1764 (2003)

11. Sánchez-Alonso, S., Sicilia, M.A.: Expressing Preconditions in Learning Object Contracts, In
Proceedings of 2nd International Conference on Multimedia, Information & Communication

Technologies in Education, 1656-1660 (2003)
12. Sánchez-Alonso, S., Sicilia, M.A. How Learning Object Relationships affect Learning Object

Contracts: commitments and implications of aggregation. In: Proceedings of Ed-Media’04 (2004)
13. Sánchez-Alonso, S., Sicilia, M.A. On the semantics of aggregation and generalization in learning

object contracts. In Proceedings of the 4th IEEE International Conference on Advanced Learning
Technologies, 425-429 (2004)

14. Sicilia, M.A., García, E. On the Concepts of Usability and Reusability of Learning Objects,
International Review of Research in Open and Distance Learning, 4(2) (2003)

15. Sicilia, M.A., Sánchez-Alonso, S. On the concept of Learning Object “Design by Contract”. In
WSEAS Transactions on systems, 2 (3), 612-617 (2003)

16. Sicilia, M.A., Pagés, C., García, E., Sánchez-Alonso, S, Rius, A. Specifying Semantic
Conformance Profiles in Reusable Learning Object Metadata. In: Proceedings of the 5th
International Conference on Information Technology Based Higher Education and Training
(2004)

17. Ternier, S., Duval, E. Web Services for the ARIADNE Knowledge Pool System. In: Proceedings
of the 3rd ARIADNE International Conference (2003)

